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Load, Stress, Principle of St.Venant, Principle of Superposition, Strain, Hooke’s law
and related problem

Introduction:

When an external force acts on a body, the body tends to undergo some deformation.
Due to cohesion between the molecules, the body resists deformation. This resistance by which
material of the body opposes the deformation is known as strength of material. Within a
certain limit (ie., in the elastic stage) the resistance offered by the material is proportional to
the deformation brought out on the material by the external foree. Also within this limit the
resistance is equal to the external force (or applied load). But beyond the elastic stage. the
resistance offered by the material is less than the applied load. In such a case, the deformation
continues, until failure takes place.

Within elastic stage, the resisting force equals applied load. This resisting force per
unit area is called stress or intensity of stress.

Load: Itis defined as any external force acting upon a machine part.ther are four types of load

1.Dead and steady load: load is said to be dead and steady load ,when it does not change
magnitude or direction

2.Live or variable load : load is said to be live or variable load ,when it changes continually

3.Suddenlly applied or shock load : A load is said to be suddenly applied load ,when it is
suddenly applied or removed.

4. Impact load : A load is said to be impact load ,when it is applied with some initial velocity
STRESS

The force of resistance per unit area, offered by a body against deformation is known as
stress, The external force acting on the body is called the load or force. The load is applied on
the body while the stress is induced in the material of the body. A loaded member remains in
equilibrium when the resistance offered by the member against the deformation and the
applied load are equal.

Mathematically stress is written as, o = %

where o = Stress (also called intensity of stress),
P = External force or load, and
A = Cross-sectional area.

Types of stress

The stress may be normal stress or a shear stress.

MNormal stress is the stress which acts in a direction perpendicular to the area. It is
represented by o(sigma). The normal stress is further divided into tensile stress and compressive
stress,



Tensile Stress. The stress induced in a body, when subjected to two equal and

opposite pulls as shown in Fig. 1.1 (a) as a result of which there is an increase in length, is
known as tensile stress. The ratio of inerease in length to the original length is known as tensile
strain. The tensile stress acts normal to the area and it pulls on the area.

Let P FPull {or force) acting on the body,
A Cross-sectional area of the body,
L = Original length of the body,
dL = Increase in length due to pull P acting on the body,
o = Stress induced in the body, and
¢ = Strain (i.e., tensile strain).

Fig. 1.1 (a) shows a bar subjected to a tensile force P at its ends. Consider a section x-x,
which divides the bar into two parts. The part left to the section x-x, will be in equilibrium if
P = Resisting force (R). This is shown in Fig. 1.1 (k). Similarly the part right to the section
x-x, will be in equilibrium if P = Resisting force as shown in Fig. 1.1 (c). This resisting force per
unit area i known as stress or intensity of stress.
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Fig. 1.1

Resisting force () = Tensile load (P)

Tenalle stress =0 = Cross-sectional area A

ik
And tensile strain is given by,
N Increase in length s E
Original length L



Compressive Stress. The stress induced in a body, when subjected to two equal
and opposite pushes as shown in Fig. 1.2 (a) as a result of which there is a decrease in length
of the body, is known as compressive stress. And the ratio of decrease in length to the original
length is known as compressive strain. The compressive stress acts normal to the area and it
pushes on the area.

Let an axial push P is acting on a body in cross-sectional area A. Due to external push P,
let the original length L of the body deereases by dl.
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Fig. 1.2
Then compressive stress is given by,
Rﬂistin!l“w:eﬂi] . Push (P) . E
Area (A) ArealA) A~

o=

Shear Stress. The stress induced in a body, when subjected to two equal and
opposite forces which are acting tangentially across the resisting section as shown in Fig. 1.3
as a result of which the body tends to shear off across the section, is known as shear stress.
The corresponding strain is known as shear strain. The shear stress is the stress which acts
tangential to the area. It is represented by 1.



Principle of 5t.Venant

Statically Equivalent Loadings.

Consider the set of three identical rectangular strips under compressive loadings as shown in
Figure 5.9. As indicated, the only difference between each problem is the loading. Because the wotal
resultant load applied to each problem is identical (statically equivalent loadings), it is expected that
the resulting stress, strain, and displacement fields near the bottom of each strip would be approxi-
mately the same.

This behavior can be generalized by considering an elastic solid with an arbitrary loading 7' over
a boundary portion §%, as shown in Figure 5.10. Based on experience from other field problems in
engineering science, it seems logical that the particular boundary loading would produce detailed and
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Saint-Venant's Principle.

characteristic effects only in the vicinity of §*. In other words, we expect that at points far away from
5* the siresses generally depend more on the resultant Fg of the tractions rather than on the exact
distribution. Thus, the characreristic signature of the generated stress, strain, and displacemeni fields
from a given boundary loading tend 1o disappear as we move away from the boundary loading points.
These concepts form the principle of Saint-Venant, which can be stated as follows:

Saint-Venant’s Principle: The stress, strain, and displacement fields cavsed by two different stati-
cally equivalent force distributions on parts of the body far away from the loading points are approx-
imately the same.



Principle of Superposition. When a number of loads are acting on a body,
the resulting strain, according to principle of superposition, will be the algebraic sum of strains
caused by individual loads.

While using this principle for an elastic body which is subjected to a number of direct
forces (tensile or compressive) at different sections along the length of the body, first the free
body diagram of individual section is drawn. Then the deformation of the each section is
obtained. The total deformation of the body will be then equal to the algebraic sum of
deformations of the individual sections.

Analysis bars of varying section

A bar of different lengths and of different diameters (and hence of different cross-
sectional areas) is shown in Fig. 1.6 (a). Let this bar is subjected to an axial load P.

Section 3
Section 2
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Fig. 1.6 ia
Though each section is subjected to the same axial load P, yet the stresses, strains and
change in lengths will be different. The total change in length will be obtained by adding the
changes in length of individual section.
Let P = Axial load acting on the bar,

L, = Length of section 1,

A, = Cross-sectional area of section 1,
Ly, A; = Length and cross-sectional area of section 2,
L,.A; = Length and cross-sectional area of section 3, and

E = Young's modulus for the bar.



Then stress for the section 1,
1”7 Areaofsectionl A,
Similarly stresses for the section 2 and section 3 are given as,

P P

v Tl 7 and oy= T
Using equation (1.5), the strains in different sections are obtained.
. : ; oy . F v Oy m—
s Strain of section 1, e, = e AR [ [+ A;]

sSimalarly the strains of section £ and o! section 3 are,
e, =X = = i and e =32 -
" E AE T E AE

Change in length of section 1
Length of section 1

But strain in section 1 =

or e =

where dL, = change in length of section 1.
- Change in length of section 1, dL, = e,L,

_PL, A,
AE "= AE

Similarly changes in length of section 2 and of section 3 are obtained as :
Change in length of section 2, dL, = ¢, L,

= ﬁp W g = _P
ALE AE
and change in length of section 3, dL, = e L,
_ PLy . P
T ALE AR

-. Total change in the length of the bar,

dL=dL,+dL,+dL,= fé* ::‘;+ i:;

ElA A A,

Equation (1.8) is used wh:er:lhe Ym;ng’s modulus of different sections is same. If the
Young's modulus of different sections is different, then total change in length of the bar is

given by,

L L, Ly ]

dL = P | - + (1.9)
|:EIAI E,A,  EjA,

-E[EL...E-'....h}

Strain

When a body is subjected to some external force, there is some change of dimension of
the body. The ratio of change of dimension of the body to the original dimension is known as
strain. Strain is dimensionless.

Strain may be :

1. Tensile strain, 2. Compressive strain,

3. Volumetric strain, and 4. Shear strain.

If there is some increase in length of a body due to external force, then the ratio of
increase of length to the original length of the body is known as tensile strain. But if there is
some decrease in length of the body, then the ratio of decrease of the length of the body to the
original length is known as compressive strain. The ratio of change of volume of the body to
the original volume is known as volumetric strain. The strain produced by shear stress is
known as shear strain.



Hook’s law

Hooke's Law states that when a material is loaded within elastic limit, the stress is
proportional to the strain produced by the stress. This means the ratio of the stress to the
corresponding strain is a constant within the elastic limit. This constant is known as Modulus
of Elasticity or Modulus of Rigidity or Elastic Modulii.
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Modulus of Elasticity, Stress-Strain Diagrams, Working Stress

Modulus of Elasticity

The ratio of tensile stress or compressive stress to the corresponding strain is a constant.
This ratio is known as Young's Modulus or Modulus of Elasticity and is denoted by E.

_ Tensile stress Compressive stress
" Tensile strain Compressive strain

Stress-Strain Diagrams

The behaviour of a material subjected to an increased tensile load is studied by testing a specimen in a
lensile testing machine and plotting the stress-strain diagram. Stress-strain diagrams of different matcrials
vary widely. However. it is possible to distinguish some commoen characieristics among varnous stress—strain
diagrams of vanous groups of materials. It is observed that broadly the matenials can be divided into two
categonics on the hasis of these charactenistics: ductile matenals and brittle materials,

Duetile matenials such as steel and many alloys of other metals have the ability 1o vield at normal tempera-
tures. The plot between strain and the comresponding stress of a ductile matenial is represented graphically by
a tensile west diagram. Figure 1.58 shows a stress vs. strain diagram for steel in which the stress is calculated
on the basis of original area of a steel bar. Most of other engineering materials show a similar pattern to a
varying degree. The following are the saliem features of the diagram:

¢ When the load 1s increased gradually, the strain is proportional
to load or stress upto a certain value. Line OF indicates this
range and is known as the line of proportionality. Hooke's
law is applicable in this range. The stress at the end point P is
known as the proportional limit.

o [fthe load is increased beyond the limit of proportionality, the
clongation is found to be more rapid, though the material may
still be in the clastic state, i.e., on removing the load, the strain
vanishes. This elongation with a relatively small increase in
load is caused by slippage of the material along oblique surfaces  © STRAIN




and is mainly due to shear stresses. The poimt E depicts the
clastic limit. Hooke's law cannot be applicd in this range as the
sirain s ot proportional o stress. Usually, this point is wvery
mear o F and many times the difference between P and E is

® When the load is further increased, plastic deformation OCCurs, i.c., on r::nmwmgi!n load, the strain is
not fully recoverable. At point ¥, metal shows an appreciable strain even without further increasing the
load. Actually, the curve drops slightly at this point to }'" and the vielding goes up to the point ¥~. The
points ¥' and ¥* are known as the upper and lower yield points respectively. The stress—strain curve
between Yand 1 is not steady.

» Afier the yicld point, further straining is possible only by increasing the load. The stress-strain curve
rises up to the point U, the strain in the region ¥ 1o U::abmlt 100 times that from © o ¥, The stress

e [f the bar is stressed further, it begins to ﬁ:nnnmi' walmlrcdwummcnm-uclmmm
After this, somewhat lower loads are sufficient to keep the specimen clongating further. Ultimately, the
specimen fractures at point R. It is noted that fracture occurs along a cone-shaped surface at about 45°
with the original surface of the specimen indicating that shear is primanily responsible for the failure of
ductilc matenals.

o If the load is divided by the original arca of the cross-section, the stress is known as the nominal
stress. This is lesser at the rupture load than at the maximum load. However, the stress obtained by
dividing with the reduced area of cross-section is known as the actual or frue stress and is greater at the
maximum load. [t is shown in the figure by the dotted line.

In brittle matenials such as cast iron, glass and stone, ¢tc.. rupture occurs without any appreciable
change in the rate of elongation and there is no difference between the ultimate strength and the rupture
strength. The strain at the time of rupture is much smaller for brittle materials as compared to ductile
matenials, There is no neck formation of the specimen of a brittle material and the rupture occurs along
a perpendicular surface to the load indicating that normal stresses are primanly responsible for the

failues Al hantla matenale

Working Stress

When the stress of the material lower than the maximum or ultimate stress at which
failure of material take place ,the stress is known as the working stress or design stress .it is
also known as safe or allowable stress
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Factor of safety, Strain energy in tension and compression, Resilience

Factor of safety

It is defined as the ratio of ultimate tensile stress to the working (or permissible) stress.

Mathematically it is written as
Ultimate stress
Permissible stress

Factor of safety =

Strain enerqy in tension and compression, Resilience

During loading a specimen, stress and strain are developed in the speci-
men depending upon the type of the load applied.

Stress =g'= (3-24)

Strain =€= (3-25)

s 5]

During loading, work is donc on the specimen and this work is converted
into strain energy. This strain energy, within the clastic limit, is known
as resilience (Fig. 3-12). Machine members, like helical, spiral and leaf
springs, are used in machines because of their propenty of resilience. Dur-
ing unloading, this energy is fully recoverable. During loading, the spring
absorbs strain energy and when the load is removed from the spring, the
stored energy is fully released. In the case of intemal combustion engines,
when the valve is opened, the spring on the stem of the valve is compressed,
and when the spring releases the energy, the valve is closed.

Strain energy per unit volume = u = %a E=§—-E_:[rcsilicmﬂ (3-26)
- 3
Total strain cnergy U= :_E x volume (3-27)

The maximum strain energy absorbed by a body until it reaches its clastic
limit is known as proof resilience, and the proof resilience per unit volume,
is known as modulus of resilience.

Proof resilience = U = EEE x volume

Figure 3-11  Stress vs. strain
showing 0.2% proof stress

a,

< .
—— ¢, slrain

Figure 3-12  Stress vs. strain
showing strain energy within
elastic limit

(3-28)



Proof Resilience

The strain energy per unit volume of the material is known as resilience.
- Resilience, u -.é,x U-ﬁ-%p.en%&'t’ (6.7)
Resilience is also known as strain energy density. It represents the ability of the material

to absorb energy within clastic limit.

When the stress p is equal to proof stress [ at the clastic limit, the corresponding resilicnce
is known as proof resilience
f.. (6.7 a)

Y ®2E
The proof resilience, also known as modulus of resilience, may be Imted upnn as the
property of the material. The units of resilience are in Joules/m® (N-m/m* = Nim?).

The term resilicnce is somctimes employed to denote total quantity of strain cnergy
stored but in specific problems the implication is obvious.

STRAIN ENERGY OF PRISMATIC BARS WITH VARYING
SECTIONS .

Fig. 6.4 shows a prismatic bar with varying section along its length.
In general, from Eq. 6.5

U= PL

2AE

.~ Total U-E—P—L -ﬁ Lt +'L—']



STRAIN ENERGY OF NON-PRISMATIC BAR WITH VARYING AXIAL FORCE

In gencral strain energy of a bar is given by Eq. 65

2AE

Applying this to a differential section of length dr, where the
axial force is P, we have

U

L
P} dx
where A, is the arca of cross-section of the differential section.

STRAIN ENERGY OF PRISMATIC BAR HANGING UNDER
ITS OWN WEIGHT

Consider an clement of length dr, at distance x from the support A, for a bar hang
frecly under its own weight. Assume that clastic conditions prevail.

Consider an clement of length dr, at distance x from the support A, for a bar hang
frecly under its own weight. Assume that clastic conditions prevail.

Axial force P, below the section is

where y is the specific weight of the material. T TP
Pi dx |
Now for the clement, U, =" l
L Plax % (yAL-x))dx _l
o Total strain energy, U= | ——= Ledlbotlie
& {ZAE { 2AE T .
AL’I -
= «(6.10)
Alternatively, stress p.-%-r(f- - X) 4
FIG. 66

--L:- L-I:
Strain energy density of the clement, u, 7F 2E
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STRAIN ENERGY OF FREELY HANGING PRISMATIC BAR WITH AN AXIAL
LOAD

As found earlier, axial force below the sections, due to sell weight =y A (L =)
- Total Px-?A(L -I]+P

FIXETY]

L 1 ) 2
_flrAd -0 +Pl'&x _yAL’ PL  yPL
U={ TAE =68 T3AE T 28 -©ID

-U'|. +U: + Uj

ol
l
The above result shows that the total strain energy stored in l
the bar consists of three components : [
() U, = strain energy due to a freely hanging bar (Eq. 6.10) |
(W) U; = Strain encrgy duc 10 an axial load (Eq. 6.5), and
(i) Uy = Strain energy component which is a function of both
P as well as y.

This shows that the strain energy of an elastic body due to more
than one load cannot be found merely by adding the strain energies obtained I"
from individual loads. This is because of the fact that strain is nor
a linear function but is a quadratic function of the loads, as is cvident FIG. 67
from Eq. 6.9.
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Impact loads and related problem Composite bars in tension and
compression

STRESSES DUE TO GRADUAL, SUDDEN AND IMPACT LOADINGS

(@) Gradual Loading ™

Let a bar of cross-sectional arca A be subjected
to a gradually applied axial load P due to which the defor-

mation is A 4 A |
Then work done by external load . ) 8 o
1 /
-EP.;\ 4 _|—'-
Work stored in the body -%R&-%pﬂa

(where R is the resistance set up by the body and p is the stress induced)
Equating the work stored 1o the work done, we get

1 1
sPAA=ZPA

From which  p -;'- (6.12)

Thus, the madmum stress set up in the bar is equal to the load divided by the area of
cross-section.

(b) Sudden Loading

If the load P is applied suddenly (instcad of being applicd gradually), the value of load

is P throughout the deformation. (Fig. 6.12 a). The deformation, however increases from zero
1o its final value A.

~. Work done on the bar =P.A -(f)

However, the resistance R set up in the body is zero when the deformation is zero,
and is cqual 10 R when the deformation is
A. (Fig. 6.12 b). Hence work stored

1
wl= 2 Ra ol WeP. & gr
1 =
=5p.A.4 (i) 3
4
ling the two , [
Cang OEFORMATION DEFORMATION

%F,qﬁ-pa te) ()



or p= 3} -(6.13)
Thus the maximum stress set up in the body is equal to twice that in the case of gradual
loading.

(c) Impact Loading

Let us now consider the impact loading. Fig. 6.13 shows load P dropping on the collar
of an eclastic body through the height &, before it commences 10 stretch.

As the weight P, after falling through the height h, strikes the collar fixed at the lower
¢nd of the bar, small oscillation is set up initially, provided clastic limit is not exceeded. After
that, the collar will take up some final position, as in the case of gradually applied load.
Let the final deformation be A.

Let us assume that weight and the supports of the bar arc infinitely rigid, so that the
whole energy in the falling weight is expanded in streiching the bar with an amount A.

Now, work done by falling weight P is

L
Equating the two, we get P[n "'P?]"ziz""'

Far I

Rearranging, p‘(‘%“] -p {%’—‘ -Ph =0

Dwum;ulmcmuy%.wp:

g- (%)p-Sg=0

'j%‘#ﬂ" S
|

! i

P,y (B} 1) (BPEA a1
From which P"f‘/(a]"'(‘“‘z][u.) 4, S goun
or P-f(|+\/1+“’5"’] (6.14)

4 FIG. 613
(The positive root giving the maumum stress)

If, however, A is considered negligible in companion to A, we have
i
P.h ZE'AL

or p-V% (6.15)

Let us express the above equations in terms of deformation A, noting that
W=P(h+4) and U=2PA

P(h+8)=2PA

4

But d-— (Hooke's Law) or P= —— asd

i

EAA

P(h+ 8) = =5




Multiplying all the sides by %—%

We get at -2FL,_2FLh _( which is quadratic equation for A.
EA EA
Solving, we get a- +\/[ ] +”“‘ .(6.16)

Now introducing A.- £ = static deflection of bar due to P,

Eq. 6.16 becomes -a..+ v {a..)‘+ (2hAx) «(6.17)
If As is considered very small in comparison to h, we gel
A=V2ha, (6.18)
This could also be obtained from Eq. 6.15, by putting p -:*:L--‘!LE
aE _\[2Ek PL\ _E r5in
L L L AE) ALL
ot A=V2ha,
The ratio ﬁ is called the impact factor.

Composite bars in tension and compression

A bar, made up of two or more bars of equal lengths but 227

of different materials rigidly fixed with each other and behaving % %
as one unit for extension or compression when subjected to an f %
axial tensile or compressive loads, is called a composite bar. ﬁ % .
For the composite bar the following two points are important :

1. The extension or compression in each bar is equal. ﬁ % L
Hence deformation per unit length ie., strain in each bar is
agual. Z S

2. The total external load on the composite bar is equal lP

to the sum of the loads carried by each different material.

Fig. 1.15 shows a composite bar made up of two different
materials.

Let P = Total load on the composite bar,
L = Length of composite bar and also length of bars of different materials,
A, = Area of cross-section of bar 1,
A, = Area of cross-section of bar 2,
E, = Young's Modulus of bar 1,
E, = Young's Modulus of bar 2,
P, = Load shared by bar 1,
FP; = Load shared by bar 2,
a, = Stress induced in bar 1, and
o, = Stress induced in bar 2.

Now the total load on the composite bar is equal to the sum of the load carried by the
two bars. |

Fig. 1.15

P=FP 4+ P,
. Load carried by bar 1
AR HUparl = “Area of cross-section of bar 1
o, = s & or P, =0,A, el EED
Ay
Similarly stress in bar 2, o, = 25 or P,=a,A, e AEiE)

Az



Substituting the values of P, and P, in equation (i), we get
P=oA; +0,A, i)
Since the ends of the two bars are rigidly connected, each bar will change in length by
e game amount. Also the length of each bar is same and hence the ratio of change in length
(the original length (i.e., strain) will be same for each bar.
_ Stress in bar 1 _o
Young's modulusof bar 1  E;

But strain in bar 1,

Oz
E,"
But strain in bar 1 = Strain in bar 2

- T )
E, E;
From equations (iv) and (v), the stresses o, and o, can be determined. By substituting
the values of o, and o, in equations (ii) and (iii), the load carried by different materials may
be computed.

Similarly strain in bar 2, =

Modular Ratio. The ratio of %:- is called the modular ratio of the first material to the
second.
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Statically indeterminate problems, Temperature stress in composite bar

Statically indeterminate problems

When a system comprises two or more membe.s of different materials, the forces in
various members cannot be determined by th< principle of statics alone. Such systems
are known as sratically indererminate sysr-ms. In such systems, additional equations
are required to supplement the equations of statics to determine the unknown forces.
Usually, these equations are obtained irom deformation conditions of the system and
arce known as compatibility equarions. A compound bar is a case of an indeterminate
system and is discussed below:

Compound Bar

A bar consisting of two or mere bars of different materials in parallel is known as a
composite or compound bar. in such a bar. the sharing of load by each can be found
by applying equilibrium and the compatibility equations.

Consider the case of a solid bar 2
enclosed in a hollow tube s shown in
Fig. 1.13. Let the subscrints 1 and 2 p 1 P
denote the solid bar and the hollow B
tube respectively.

Equilibrium equation As the Fig. 1.13
total load must be equal to> the load taken by individual members,
P =P+ P, (i)

Compatibility equation The deformation of the bar must be equal to the tube.

SIS o S o P,=-—P=‘*E' (ii)
AE,  AE AE;

Inserting (ii) in (i),

P= _PIEL.'.R! = R"t:!’EI +F3A1E1 - P’rﬁEI +AGE‘,J
AE, AE, AE,
or P2= M_ (1.12)
AE + AE,
P.AE,

1 2

(1.13)



Analysis of uniformly tapering circular Bar

A bar uniformly tapering from a diameter IJ; at one end to a diameter I, at the other
end is shown in Fig. 1.13.
Let P = Axial tensile load on the bar
L = Total length of the bar
E = Young's modulus.

-0

k

Consider a small element of length dx of the bar at a distance x from the left end. Let
the diameter of the bar be D at a distance x from the left end.

Then D,-D.-[El%nl)x

=D, — kx 'rhmk-ﬁ;—'pl
Area of croas-section of the bar at a distance x from the left end,

A =2 D?=Z (D, -kxR.

r

- -
Now the stress at a distance x from the left end is given by,
Load

- .

P 4P
- ; -
(D, - k.x)? =(D;-kx)
4

The strain e, in the small element of length dx is obtained by using equation (1.5).

. Stress _ o,
: e

= 4P xi— 4
x(Dy—k.x)* E =EWD, -kx)?
-~ Extension of the small elemental length ax
= Strain. dx = ¢_. dx
4aF

S REWD,-k.of B

Total extension of the bar is obtained by integrating the above egquation between the
limits O and L.




. Total extension,
L = L‘L - ﬁj:’ D, — kxr® . dx
n BE(D, — k.x)* nE

L - 2 (-
4; (Dy —k Ex;} 28 4x [(Multiplying and dividing by (- k)]
=5 =

or [D, 2.0 op 1 i
"xE | (- Dx(—k) = xEk | 1Dy - k.x)
4P T
“xEk |D,—k.L D,—k=0

4pF | _ 1 1
“=xEk |D,-%k.L D,

Substituting the value of k = % in the above equation, we get

Total extension,
— 4P 1 - 0
,E_[En-_ﬂ;] D ,[E:-_Dz}L D,
L ' L
___4PL 1 e 1
nE.(D,-Dy) | D;-Dy+D; Dy

4PL ‘i__i
‘us.m,—n.:[p, n,]
= 4APL <Dy -D;)  APL
xE.(D, - Dy) DD, n ED,D,
If the rod is of uniform diameter, then D, — D, = D

. 4PL
-~ Total extension, dl. = ———
il =E.D?

Analysis of uniformly tapering rectangular bar

A bar of constant thickness and uniformly tapering in width from one end to the other
end is shown in Fig. 1.14.

¥

e




Let P = Axial load on the bar
L = Length of bar
a = Width at bigger end
b = Width at smaller end
E = Young's modulus
t = Thickness of bar
Consider any section X-X at a distance x from the bigger end.
Width of the bar at the section X-X
{a-bx
= L

=a - kx where k =

Thickness of bar at section X-X = ¢
-. Area of the section X-X
= Width = thickness
= (a — kxi
= Stress on the section X-X
Load P
Area  (a— kx)t
Extension of the small elemental length dx
= Strain = Length dx

=a
a-b

. =]
S";" x dx [*.* Strain = u;ua]

P
[E’-iﬁi] " P
-—'—é—"—!ﬁﬁf [- sm.(ﬂ_hk)
-
= Ela-kxit %

Total extension of the bar is obtained by integrating the above equation between the
limits O and L.

~. Total extension,

L P P L dx
d=[ T = b e

P i (_1) P
-E.lm[[u—kx)]al I I—Enﬂ&tﬂ—lf—]—k‘tﬂ]

P o e a




Thermal Stress

Thermal stresses are the stresses induced in a body due to change in temperature.
Thermal stresses are set up in a body, when the temperature of the body is raised or lowered
and the body is not allowed to expand or contract freely. But if the body is allowed to expand
or contract freely, no stresses will be set up in the body.

Consider a body which is heated to a certain temperature.

Let L = Original length of the body,

T = Rise in temperature,
E = Young's Modulus,
2 = Co-efficient of linear expansion,
dl. = Extension of rod due to rise of temperature.
If the rod is free to expand, then extension of the rod is given by

dL =a T.L. A 113D
This is shown in Fig. 1.23 (a) in which AEF represents A = =
the original length and BB’ represents the increase in length E e &
due to temperature rise. Now suppose that an external m.l l_____'
compressive load, P is applied at B* so that the rod is decreased in f—— | ———sle-oL
its length from (L + «TL) to L. as shown in Figs. 1.23 (b) and ic). :A &
n & : - P
Then compressive strain = —lu;.h- i) : B s
Original length - S T
_ a.T.L -ﬂL-u.T ik 8
L+a.T.L L ; I‘_F
s feh :
But S =E : L ol
Strain : Fig. 1.23 :

Stress = Strain x E = a.T.E
ﬁndluadn‘rthmstmthemd Stress x Area = a.T.E x A

If the ends of the body are fixed to rigid supports, so that its expansion is prevented,
then compressive stress and strain will be set up in the rod. These stresses and strains are
known as thermal stresses and thermal strain.

. Extension prevented
-. Thermal strain, e= —
Original length
dlL a.T.L
T e e
And thermal stress, o = Thermal strain = E
= aT.E.

Thermal stress is also known as temperature stress.
And thermal strain is also known as temperature strain.

Temperature stress in composite bar

Fig. 1.24 (a) shows a composite bar consisting of two members, a bar of brass and
another of steel. Let the composite bar be heated through some temperature. If the members
are free to expand then no stresses will be induced in the members. But the two members are
rigidly fixed and hence the composite bar as a whole will expand by the same amount. As the
co-efficient of linear expansion of brass is more than that of the steel, the brass will
more than the steel. Hence the free expansion of brass will be more than that of the steel. But
both the members are not free to expand, and hence the expansion of the composite bar, as a
whaole, will be less than that of the brass, but more than that of the steel. Hence the stress



fa)

induced in the brass will be compressive whereas the stress in steel will be tensile as shown
in Fig. 1.24 (¢). Hence the load or foree on the brass will be compressive whereas on the steel
the load will be tensile.

Let A, = Area of cross-section of brass bar
o, = Siressin brass
€, = Strain in brass
a, = Co-efficient of linear expansion for brass
E, = Young's modulus for copper

A,o,e and o, = Corresponding values of area, stress, strain and co-efficient
of linear expansion for steel, and
E, = Young's modulus for steel.
& = Actual expansion of the composite bar

Now load on the brass =Strminirrnnxﬁrenufbn:as
= M:A.
And load on the steel dxA

For the equilibrium of the system, compression in copper should be equal to tension in
the steel

or Lmdonutabrua Load on the steel
O, xA, =0, %A
A.'lnn we know that ll:tunl expansion of steel
= Actual expansion of brass i)
But actual expansion of steel
= Free expansion of steel + Expansion due to tensile stress
in steel

=u,.r.f.+%_f_-.r.

And actual expansion of copper _
= Free expansion of copper — Contraction due to compressive
stress indueed in brass

wa,.T.L- 2t L
E,
Substituting these values in equation (i), we get

ﬂ.xTKL+:T:xL=ELKTHLw%iKL

O, = =
or a‘T+E' a, x T Ea.

where T = Rise of temperature.
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Complimentary shear stress, Shear strain, Modulus of rigidity, Poisson’s ratio,
Bulk Modulus, Relationship between elastic constants.

Complimentary shear stress

It states that a set of shear stresses across a plane is :
always accompanied by a set of balancing shear stresses (i.e., D — ¢
of the same intensity) across the plane and normal to it.

Proof. Fig. 2.8 shows a rectangular block ABCD, ‘T l‘
subjected to a set of shear stresses of intensity t on the faces

AB and CD. Let the thickness of the block normal to the plane A J— B
of the paper is unity.
The force acting on face AB
= Stress x Area
=txABx1=1AB
Similarly force acting on face CD
=txCDx1=1tCD
=1.AB (- CD=AB)
The forces acting on the faces AB and CD are equal and opposite and hence these forces
will form a couple.
The moment of this couple = Force x Perpendicular distance
=1.AB x AD (1)

If the block is in equilibrium, there must be a restoring couple whose moment must be
equal to the moment given by equation (i). Let the shear stress of intensity 1" is set up on the
faces AD and CB.

The force acting on face AD =t xAD x 1 =1.AD

The force acting on face BC =t xBC x 1 =7vUBC =1v.AD (- BC =AD)

As the force acting on faces AD and BC are equal and opposite, these forces also forms
a couple.

Moment of this couple = Force x Distance = . AD x AB w(E1)
For the equilibrium of the block, the moments of couples given by equations (i) and (ii)
should be equal

The stress v’ is known as complementary shear and the two stresses (r and t’) at right
angles together constitute a state of simple shear. The direction of the shear stresses on the
block are either both towards or both away from a corner.

Relationship between stress and strain

1.9.1. For One-Dimensional Stress System. The relationship between stress and
strain for a unidirectional stress (i.e., for normal stress in one direction only) is given by
Hooke's law, which states that when a material is loaded within its elastic limit, the normal
stress developed is proportional to the strain produced. This means that the ratio of the normal



stress to the corresponding strain is a constant within the elastic limit. This constant is
represented by E and is known as modulus of elasticity or Young's modulus of elasticity.

Normal stress o
. 5 g — = Constant or = E
where & = Normal stress, ¢ = Strain and E = Young's modulus
or e== L7 (A
E

The above equation gives the stress and strain relation for the normal stress in one
direction.

1.9.2, For Two-Dimensional Stress System. Before knowing the relationship between
stress and strain for two-dimensional stress system, we shall have to define longitudinal
strain, lateral strain, and Poisson’s ratio.

1. Longitudinal strain. When a body is subjected to an axial tensile load, there is an
increase in the length of the body. But at the same time there is a decrease in other dimensions
of the body at right angles to the line of action of the applied load. Thus the body is having
axial deformation and also deformation at right angles to the line of action of the applied load
(i.e., lateral deformation).

The ratio of axial deformation to the original length of the body is known as longitudinal
{or linear) strain. The longitudinal strain is also defined as the deformation of the body per
unit length in the direction of the applied load.

Let L = Length of the body,
P = Tensile force acting on the body,
4l. = Increase in the length of the body in the direction of P.

Then, longitudinal strain = %

2. Lateral strain. The strain at right angles to the direction of applied load is known
as lateral strain. Let a rectangular bar of length L, breadth & and depth d is subjected to an
axial tensile load P as shown in Fig. 1.5. The length of the bar will increase while the breadth
and depth will decrease.

Let &L = Increase in length,
&b = Decrease in breadth, and
&d = Decrease in depth.

T longltodioal stk = % (1.7 (B))
and latﬂmlstrajn-% or % 1.7 (C)H)
- =] -
al i : ti—am — L&
o= i — &) —» L L =
£l L=&L -

3. Poisson's ratio. The ratio of lateral strain to the longitudinal strain is a constant
for a given material, when the material is stressed within the elastic limit. This ratio is called
Poisson's ratio and it is generally denoted by p. Hence mathematically,

= = . Lateral strain

mennrnnn,j.l-[ o -
or Lateral strain = p x Longitudinal strain

As lateral strain is opposite in sign to longitudinal strain, hence algebraically, lateral
strain 18 written as

Lateral strain = — u x Longitudinal strain -[1.7T (E))

- [1.7T (D]




4. Relationship between stress and strain. Consider a
two-dimensional figure ABCD, subjected to two mutually %2
perpendicular stresses o, and o,. A I o
Refer to Fig. 1.5 (a).
Let o, = Normal stress in x-direction
O, = Normal stress in y-direction oy oy
Consider the strain produced by o, & o
The stress o, will produce strain in the direction of x and 1
also in the direction of ¥. The strain in the direction of x will be -

longitudinal strain and will be equal to EEL whereas the strain

in the direction of ¥ will be lateral strain and will be equal to — p = %

(-* Lateral strain. = = p x longitudinal strain)
Now consider the strain produced by ©,.

The stress o, will produce strain in the direction of ¥ and also in the direction of x. The

strain in the direction of ¥ will be longitudinal strain and will be equal to EE*- whereas the

strain in the direction of x will be lateral strain and will be equal to — p = EEi-.
Let e, = Total strain in x-direction

e, = Total strain in y-direction

Now total strain in the direction of x due to stresses ¢, and g, = EL—p‘—E—

E
Similarly total strain in the direction of ¥ due to stresses o, and o, = Esz- -H EEL

. e,_”—é—g% LT ()
e L) | (1.7 (G)
€, E I E 1. 1

Modulus of Rigidity or Shear Modulus. The ratio of shear stress to the

corresponding shear strain within the elastic limit, iz known as Modulus of Rigidity or Shear
Modulus. This is denoted by C or G or N.

Shear stress 1
Ci{or &G or N) = Si k=

Bulk modulus

It is the ratio of direct stess to volumetric strain,it denoted by letter K

K= direct stress



BELATION BETWEEN ENGINEERING CONSTANTS
Consider a square clement ABCD under the action of a simple shear stress r (Fig.1.60a). The resultant
distortion of the element is shown in Fig. 1.60b The total change in the comer angles is = ¢. However, for
convenience sake, the side 45 may be considered to be fixed as shown in Fig. 1.60c. As angle ¢ is extremely
small, CC" and DD’ can be assumed to be arcs. Let CE be a perpendicular on the diagonal AC*

Lincar strain of the diagonal AC can approximately be taken as

- AC"= AC
s AC
EC*
e
. CC'cos45°
ABlcos 45
- BC cos® 45°
AL ARA (CC* = @~ BC and AB = BC)
BC
.
—
But modulus of rigidity.G = r/peor @= ¢& (Eq.1.5)
r .
& = G ()
It will be shown in Section 2.1 that in a state of simple shear on two perpen- D c
dicular planes, the planes at 45° are subjected to a tensile stress (magnitude equal
to that of the shear stress) while the planes at 135 are subjected 1o a compressive
stress of the same magnitude with no shear stress on these planes. Thus, planes AC r r
and B[ are subjected to tensile and compressive stresses respectively each equal
to T in magnitude as shown in Fig. 1.61. r T
Hence lincar strain of diagonal AC is
T vT T A a8
-t [-El=Za ..
€ E ( E] .E{ + ¥) (i) Fig. 1.61
From (i) and (ii),
%-%“‘FV}
or E=2G{1+ )

As E = 31 —2Zv)
- E =201 + v)= 3K(1 — Zv)
This eqgquation rclates the clastic constants.

Alzo from above, | = we %. - R 1 %

E
and ]l —Z2Zve= 3K
Adding (i) and @ii). 3= p:[-'—+ —‘—-)=—£—:3x +G)

o AK AKG
OKG

. E=3x+G
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Analysis of Biaxial Stress. Plane stress, Principal stress, Principal plane and
related problem

Introduction

While analysing a stress system, the general conventions have been taken as follows:
& A fensile siress is positive and compressive siress, negative.
# A pair of shear siresses on parallel planes forming a clockwise couple is positive and a pair with
counter-clockwise couple, negative.
» Clockwise angle is taken as positive and counter-clockwise, negative,
The following cases are being considered:
(i} Dircct stress condition
(1) Bi-axial stress condition
{iii) Pure shear stress condition
{iv) Bi-axial and shear stresses condition

(i) Direct Stress Condition

Let a bar be acted upon by an external force P resulting in a direct tensile stress o, along its length
(Fig. 2.1a). The stress on any ransverse section such as BCDE will have a pure normal stress acling on it
The stress acting on an arbitrary plane ACDF inclined at an angle 8 with the vertical plane will have two

components:
o
Ahc
e T AR
E; :
thie —
(a)

Fig- 2.1

— normal component known as dinect siress component
— tangential component known as shear siress component.

These stress components can be determined from the consideration of force balance.

If the bar is imagined cut through the section ACI)F, each portion of the bar is also in equilibrium under
e action of forces due 1o the stresses developed. For convenience, a tnangular prismatic element ABCDEF
ontaining the plane ACDF can be taken for the force analysis.

Figure 2.1b shows the forces acting on the triangular clement.

Let
dyv = the length of the side BC
ds = the length of the side AC
o = normal stress acting on the plane BCDE
o, = normal stress acting on the plane ACDF
Ty ™ tangential or shear stress acting on the plane ACDF

Assume a unit thickness of the prism and equate the forces along normal and tangential directions to the

slane ACDF of the prism for its equilibrium, i.e.,
:r.r.:.h—n:r‘_r.{r.cmﬂ = [}

g dveosd o, dveos 2
s o= == = = .;'yfmsﬂ -, cos” & (2.1)
wund Ty de+or dysing=0 (assuming r, clockwise as positive)
W Ty™ —d—‘fi—?“iq-udﬂ:;:;’;ﬂ-uﬂ‘,sinﬂmsﬂu—%ﬂ,sinl‘ﬂ 2.2
The negative sign shows that 7, is counter-clockwise and not clockwise on the inclined plane.
= When 8 = 07, T =T, and T,=10
* When @ =45°, o, ,=o /2 and T ™= = o /2 (maximum, counter-clockwise)
= When @ = 90", wo,~0 and Ty=0
e When@= 135° o ,=o /2 and T = o /2 {maximum, clockwise)



= The maximum shear stress is oqual to one half the applicd stress,
The resultant stress on the plane ACDF (Fig. 2.1¢).

L d's'l"ré

- ﬁ,Jcm"E +sin’@cos’ @

-, cmﬂ-.‘cmzﬂ +sin- @

-a.mﬂ

; i o, sin@ g
Inclination with the normal stress, tan ¢ = —'% = tan &
o, cos” 8
or . -0
ic., it is always in the direction of the applied stress.

(i) Bi-axial Stress Condition

Let an element of a body be acted upon by two tensile stresses acting
of two perpendicular planes of the body as shown in Fig. 2.3, Let de,
oy and ofs be the lengths of the sides A8, BC and AC respectively.
Considering unit thickness of the body and resolving the forces in
the direction of o

Torels—ar iy cos@—o el sind=0

_ Oydycos® Oydusin® g dycos@ oy desind
ds ds dyicosd drefsing

=, cos’ 0 + o _sin’ 0

or Ty

The expression may be put in the following form,
1+ oos 26 = 1 —cos 28
2 o 2

Resolving the forces in the direction ol 7,
Tgrdster, dy - sinf— o dx-cosB=0

1 1
ﬂ'g-:ﬂ':[ ]=E(n1+a}.j+5{nl—a}.]m29

a,dj-s.ina_'_u‘,d:msﬂ o _ O, dysin o, dx cos @
ds dx dvfcos 8 dxfsin 8
= —o,sinfcos@+ o, sinBcos @

or Ta =

- ={CF, -a_.,}sinﬂm:&-—%{q,—a',}sinzﬂ

which indicates that it is counter-clockwise if o, is more than o

Resuliant stress,
o, - ..,‘-:rs-i- 1'5

2 * 2
- {%[a,+u,)+%(¢.—¢,}mm} +{-—%{ﬂ"-ﬂ'r)5in29}I

2

(1 2.1 2 1
1@+ 0,V + (0, ~0,) cos? 20 + 2(0, +0,)(0, - 0, )c0520

+i‘a,-a,1=m=za

[ F
1 1 1
- E(g-l +o, }3 +I(ﬂl_ﬂ’_,1+ E{u_f - af": }msw]l

2
1 2 _2 2 1.2
= ztd‘+:rr+2cr,aj+a,+:r_f-h,ﬂ,}*ila,nﬁilmm

2
= [%{a:‘: + 4:|rjzr )+ -;—{:r:‘; - ai Joos 28']'



r2
- [%:ri’u +c0s20) + %oﬁu - mzm]l

rz
B [-;-af.zmza +307 - 2sin? a]|

= J—ﬂ‘ﬁmzﬂ+u§ﬁn:9
and the angle of inclination of the resultant with o,
-{g, =T, )sinf cos @ o, -0,

T
tanp=—2= . - =
Op o,cos’@+0,sin"8 O,cotf+g, und

For greatest obliquity or inclination of the resultant with the normal stress,

ditang) _ o
48

2 2 2 2
or -cr‘mu-:‘ﬂ+cr,sn: 8=0 or ocosec”@=0,sec [}
Compound Strett and Strain III@

g,

un@="% or wund= Ix 2100
o, L
o,.-a, o, -0, —
3 @n P, = = (2.10a)
o.Jo.lo, +o, Jo.lo, 2 o0,
The angle of inclination of the resultant with o,
O.-de o -dy-tan@ o,
1an &= = = —tanf (2.11)
a, - dy .- dy '

The above results show the following:

& The mﬂlmmtllcin:lincdphntvm'icsbﬂ“mllmvnlu:su!a'lndn'_lsihl‘.'-nglf.'i‘is
increased from 0° 1o 90°. For equal values of the two axial stresses (o, -ur},cr_isnlmys equal to o
ordar_.

o The shear stress is zero on plancs with angles 0° and 907, ic.. on horizontal and vertical planes. It has
maximum value numerically equal to one halfl the difference between given normal stresses which
occurs on plancs at = 457 o the given planes.

Conay ™ t%td, -a,) (2.12)
and the normal stress across the same plane,
and the normal stress across the same plane,
1 1 1
u""’:"ir‘a’+u-')+ Eu:,-cr, ]m‘m"--z—tc,+u_,. (2.1

(i) Pure Shear Stress Condition
Let an element of a body be acted upon by shear stresses on its two perpendicular faces as shown in Fig. 2.4,
Let dr, dy and ds be the lengths of the sides AB, BC and AC respectively.
Considering unit thickness of the body and resolving the forces in the direction of o,
o, di—1 de-cosf-7-dy-sin8=0
i rdrcmﬂ+tdp-sinﬂ_t-£rmﬂ+r-tu-sinﬂ
E ds ds defsin@  dvicos @
= Tsin@cos &+ 7sinPcos@ = r-3in 28 (2.15)
Resolving the forces in the direction of 7.
r,ods-r-dy-cos@+r-dx-sinf=0
Tdveos@ rdn.inlln Tdveos@ tdrsin
ds dx dvifcos @  dvfsin @

5 o e -
- :mve-nin-a:r[(““:‘"]-(' T”]]-rmze (2.16)

or Ta™




Fig- 2.4
Fig- 24
which shows that it is up the plane for 8 < 45 and down the plane for @ > 45°,
The resultant stress on the plane AC, o, = Jﬂi-lnfs = rJt:inlﬂl2+(cm 20)°

=7
Inclination with the direction of shear stress planes. tan ¢ = H = tan2§
or =20

(iv) Bi-axial and Shear Stresses Condition
L&t an element of a body be acted upon by two tensile stresses along with shear stresses acling on two perpen-
dicular planes of the body as shown in Fig. 2.5. Let dv, oy and oy be the lengths of the sides A8, BC and AC
respectively.
Considering unit thickness of the body and resolving the forces in the direction of o,
Gyridi=e cdy-cos@+ o cdvsin@+ 7 dy - sinh 4 7 - udv - cos @
d,dymﬂ+ﬂfd—l!iﬂﬂ+r-dysinﬂ+r-.d'.rmﬂ
or Ty ds ds pre s
_ d‘J_JymE_'_ﬂyd-“iﬂﬂ Tdysin® rdrcos8
dylcos®  delsin®  dvicos®  du/sin @

] . oa-dycose
o raycos® 1, 2 Fysine

- (= ﬂ.-lg-'l-ﬂ‘
Ty
® o O £ o, - oy

A

—

5_
-y
- i

¥
Ty

r- dx gin @
of

; -
J Ti..f-dxcos @
= o, dxsing

Fig- 1.5



- T, c0s> 8 + O, sin" @ + T sin & cos & + T sin O cos @
= O, c0s” 8 +0,sin” @ + rsin 28

1 + cos 28 1= cos 28 .
= u‘,[-—-—z-—)+d,(T)+ T -sin 28
-%tarj-i-a,)-b%[a‘—a_t}m!&-lr-sinlﬂ
Resolving the forces in the direction of =,
8 -ds+o dy-sinf-o -dv-cosf-r1-dy-cosf+r-ci-sing=0
_@dysin8 a, dvcos T-dveosf  r-desind _
o T T & as ds
__a‘inin o, drcos 8 rdycos®  tdxsin
dyvfcos @  drefsin@ dvfcos @  drefsin @
--dls.inﬂmﬂ+u_,sinﬂmﬂ+tmz-ﬂa—tﬁnzﬂ
lfmiﬁ]_[l‘mzﬂ]]

- —%{ﬂ,— oy )sin 28 + t[[

2 2
'-%id‘.-#ﬂﬂn!ﬂ-&rm!ﬂ (2.21)
Equations 2.19, 2.20 and 2.21 can be used to determine the stresses on any inclined plane in a material
under a general state of stress.

To determine the planes having maximum and minimum values of direct stress, differentiate Eq. 2.20 with
respect to 8 and equate to zero, i.c.,
da, 1 .
ﬁ:ﬂ—itﬂ,—d’,}ZI&n 20+ 2r-cos28=0
3(04=0,)26in20 =21 .cos 20

2T

tan 28 =
o, _d.\'
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Principal stress, Principal plane ,Mohr’s Circle for Biaxial Stress.and related
problem

Principal stress, Principal plane

In general. a body may be acted upon by direct stresses and shear stresses. However, it will be seen that even
in such complex systems of loading, there exist three mutually perpendicular planes, on each of which the
resultant stress is wholly normal. These are known as principal planes and the normal stress across these
planes, as principal sircsses. The larger of the two siresses o, is called the major principal sfress, and the
smaller on¢ or.. as the minor principal siress. The commesponding planes are known as major and minor
principal planes, In two-dimensional problems, the third principal stress is taken to be zero,

Az shear stress is 2oro in principal planes,

1 .
r¢=-;!-:!_-|:r,h.m28+rcmlﬂ-ﬂ (Eq. 2.21)
1 in 3
oF _—}[a,—i:r.,lﬂn-ﬂ':rm!ﬂ
2r
or lan 28 = {(2.23)
&, — Ty

which provides two values of 28 differing by 1807 or two values of @ differing by 90°,
Thus, the two principal planes are perpendicular to cach other (Also, refer Eq. 2.22).

From Fig. 2.6, &Q"
sin20=3 A
Jlﬂ.l =@ ) +41
F, -0
cos 2 =+ ! e
- »
‘[‘t_ﬂ,l -a, ) +4r
| Righi-hand sides of both the above equations should have the same signs, positive Fig. 2.6

or negative while using them. Substituting these values of £in28 and cos28 in Eq. 2.20,
twio values of the direct stresses, ie., of principal stresses corresponding to two values of 26 are obtained.

1 I .
1y = 5040, ) 4510, -0, Jeos 28 + 7-sin 28
2 g i
1 g, —a,) 2r

|

==(0, +0, )t~ $r.
a ! E] 3 3 ]
B : \lflz-:!'J| -0, +41° ,flrzj| —a, )P +4r?

il ¥
(@, =a, )" +4r~
.é{a‘i-al,.]il 22 0y)

= Jlo,. -0, P +ar?

I 3 ]
g,+0,)% —2-~.|||{»:lr,1 =@y +4r° (2.24)

Maximum shear stress-

hmy:;mpk:qﬂmuflnnding.ih:mhmmmcnﬁnimmm1mmlhphﬁplm
and the shear stress is zero in their planes. To find the maximum value of shear stress and its plane in such a
system, consider the equation for shear stress in a plane, i.c.,

T | =

r,--%[a,-o,]:in 28+ tcos 28 (Eq. 2.21)
For maximum value of r,, differentiate it with respect to 5 and equate to zero,
%=_m—u,}mm—zr sin 26 =0
[ el -

or mm“—T (2.25)



This indicates that there are two values of 28 differing by 180 or two valucs
& differing by 90°. Thus, maximum shear stress planes lie a1 right angle to each
other.

(o, -
How.umzﬂ-——-'Tr-—"-—j can be represented as shown in Fig. 2.7,

tin28=3% it il - coslf =+ 13 .
Jo, -, +4r? Jio,-a,) +ar’
Right-hand sides of both the above equations should have the opposite signs, i’ Fig. 2.7

one positive the other negative while using them. Substituting these values of sin2#
and cos26 in Eq. 2.21, two values of the shear stress are obtained.

Ty™ —%{d,-—d,hin 28 + tcos 20

Tonay ™ % .,,‘.[-:r_1 - -:rl.;t1 +dr?
: oy 1 I =——m
As maximum prineipal stress, |:t|-i{-:rJt +¢_¥j+5 ll}’,-ﬂ'}.}li- 4r-
and minimum principal stress, & = %:g_ +a,)- %,‘]{q‘ ~g, ) +art

Subtracting (ii) from (i), g, - @, = J:a, -0,/ +41

1
P TM=E{UI_.UJI

. 1 ]
Thus, in general, Ty, = 5(0) - 03) = E‘ﬁﬂ’ g, +4r

2
Now, principal planes are given by, tan2f, =
a,-0,
- a,-ad,
and planes of maximum shear siress, tan2f_ = B

Mu!lplj'mg the two, u.nZ EP * lan 2 8, l_-l whi_th means Z_I?} - Zﬂr_+ 90" vt.'lr_l.'I1 = ﬂp_'l- {5"_
MOHR'S CIRCLE-

g 2
The stress components on anmy inclined plane can easily be found with the help of a geometrical constructi
known as Mohe & stress cirele,

Two Perpendicular Direct Stresses

Let the matenial of a body at a point be subjected to two like direct tensile stresses o, and o (o> frp]_ om tw
perpendicular planes AL and A8 respectively (Fig. 28)

A

4R

-,



Make the following constructions:

& On r-axis, take OF = o and OF = o 10 some scale. A stress is taken towards the right of the origin O
(positive) if tensile and toward left (negative) if compressive.

o Bisect EF a1 C.

& With C as centre and CE (= CF) as radius, draw a circle.

The radius CF represents the plane AD (of direct stress o ) and CE; the planc AB (of direct stress o).
Note that the two planes AD and A8 which are a1 90% are represented at 180° apan (or at double the
angle) in the Mohr’s circle. This indicates that any angular position of a plane can be located at double
the angle from a particular plane.

a Locate an inclined plane in this circle by marking a radial line a1 double the angle at which the required
plane is inclined with a given plane, ¢.g., if the plane 8D is inclined at angle @ with plane 4D in the
counter-clockwise direction, then mark radius CR at an angle 28 with CF in the counter-clockwise
direction.

& Dvaw LR L x-axis. Join OR.

MNow, it can be shown that €L and LR represent the normal and the shear stress components on the inclined

planc B,

From the geometry of the figure,
oCcs= %{ﬂc‘ +ﬂ£‘]-%tar ~CF)+{0E +CE)

- JOF-che©E+cH (CE = CP)

1 1
= 3(OF +OE)=2(0, +0,)

CL-C#mZ&-CFmM-—;rm,—-u,:mzd (CR =CF)
Thus OL = OC + CL= 3(0,40,)+3(0,~0,)c0s 20 =g, ...(Refer Eq.2.23)
And LR= CR'sin 20 = CF sin20 = 1(0, ~0,) sin20= 1, ...(Refer Eq.2.24)

Two Perpendicular Direct Stresses with Simple Shear

In the above-discussed case, CR and C§ represent two perpendicular planes having direct tensile stresses
OL and OM and shear stresses LR (clockwise) and MS (= LR, counter-clockwise) respectively. Mow, if these
happen to be the known stresses on two perpendicular planes, then stresses on any other inclined plane can
easily be found by locating that plane relative to any of these planes.,
LHCRmdﬁmummmmm.ﬂﬂddﬂmpmﬁmywthnGL-n't.{JM-rrlnd
LR and MS each equal to 7 in the clockwise and counter-clockwise directions respectively (Fig. 2.9). Now if
it is desired to find stresses on an inclined plane at angle @ clockwise with plane £D, a radial line CF may be
drawn at angle 28 in the clockwise direction with CR. Then QN and NP will represent the direct and shear
components respectively on the plane AD and the resultant is given by OP.
Thus the procedure may be summarised as follows:
¢ Take OL and OM as the direct components of the two perpendicular stresses o and o .
# At L and Mdraw Ls LR and MS on the r-axis each equal to  using the same scale as for the direct
stresses. For the stress system shown in Fig. 2.8, LR is taken upwards as the direction on plane 8D is
clockwise and M5 downwards as the direction on plane AB is counter-clockwise.
® Bisect LM at C and draw a circle with C as centre and radius equal to CR (= C5).

o
Ty
L
- Ta
A (]




# Rotate the radial line CR through angle 28 in the clockwise direction ifl 8 is taken clockwise and let it
take the position CP.
o Draw NP L onx-axis. Join OF,
It can be proved that €N and NP represent the normal and the shear siress components on the inclined
planc AD.
From the geometry of the figure,

1
OC=2(0,+0,)  asbefore.

CN = CP cos (26 - B)
= CR cos (28 = ) o dCP = CR)
= CR (cos2 cos B+ sin2@ sin )
= (CR cos @) cos 28 + (CR sin 8) sin 28
= CL cos 20 + LR sin 28

- 2@~ 0,)c0s 20+ 7-5in 20 ACL = OL - OM)

Thus ON = OC + CN = ‘:_ifa,ﬁ a,) +%[ﬂ';“ﬂ';ﬂ¢mw+ r-sin20 = o, ...(Eq.2.20)

and NP = CP sin (28 - 8)
= CR sin (26 - B)
= CR (sin 28 cos B - cos 28 sin B)
= {CR cos B) sin 28 = (CR sin 3) cos 28§
= CL sin 28 = LR cosl@

-quu,—u'_,}sinlﬂ—rml‘ﬂn—'rg .(Eq.2.21)
As NP is below the x-axis, therefore, the shear stress is negative or counter-clockwise.
Mathematically, NP = —[';—ld,—n‘,rsinlﬂ— T Cos Iﬂ] =—T_|!{ﬂ,—:l'_tlsin 28 + r cos 28]
Principal Stresses

As shear stress is 2eno on the principal planes, OF represents the major principal plane with maximum normal
stress. In a similar way, OF represents the minor principal planc.

OF = OC+CF=0C +CR =OC+ Jor? + LR®

1 1 :
- E{o‘ +a,)+J{E(a,-a.’ ]} +12

1 1 2 2
- E(#.ﬂ*ﬂ,l + EJ(::,—#_,.} +4r

= Major principal stress
QE=0OC-CE=0OC=-CR =0C - ch...m:

1 1

= Minor principal stress
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Two dimensional state of strain

IF direct and shear strains along x- and p-directions are known, normal strain (£,) and the shear strain (g,) in
a direction at angle & with the x-direction of a body can be found by the following method;

Normal Strain

Let a rectangular clement GACE with angle of the diagonal 8 with the dircction of &, or x-axis distorts
1o become a parallelogram QA4 °C'8 " under the action of linear strains £, ¢_and shear sirain ¢ as shown in
Fig. 2.36. Point & moves 1o C". Let r be ihe lengih of the diagonal OC.

¥
¥
i3
£l sin @ (R
’r.ﬂ Y 1
reng| ; !
l : - k X
H—Fmﬂ'—hf'l—h'i‘.
o AN
00 @
Fig 2.36

Now, elongation of the diagonal = C°C" = C°D + DE + EC
= (g - * cos §) cos 8 +(e rsin #) sind +(g *rsin 8) cos §

=g, rcos + e, v sin sind v rosin® - cos @

Since strain of the diagonal, &= C"Cir
3 gt -m’ﬂﬂ}-:inr’ﬂw-sirﬂ*mﬂ (2.28)

w

1

l 1 |
= E e, (14c0s 20) + E ¢, (1-cos 20)+ 'z'wlmiﬁ

I 1 .
'E(‘:“.}*E{‘.",m‘m*i'mm (2.283)
_ Compare the results with bi-axial and shear stresses conditions (Eq. 2.25).

+ Ina linear strain system, e, =, * cos*f or s,(m]

# Inapure shear system and for 0 =45°,¢," = 92,




Shear Straln

The shear strain at a point on a plane inclined at angle & is the change in the angle between two straight lines
perpendicular to each other. As shown in Fig. 2.37, if these lines are OC and OF before distortion, they become

OC* and OE " after distortion. Let the angle between OC and OC "be a and between OF and OE 'be .

g
,' 4 s
;% /
e |! ,-'.
c(; ¢ pro Ly
H A A
: ¥ :
E‘__-_‘__“___FE
E

F
Fig.2.37

Thus, shear strain = ¢, = change of angle of OC - change of angle of OE

=g=Y
As the angle a is small, & = tan a = CC/r
CC* = CF +FC* = CF + (GE - GH)
-{:.-r-mﬂ:uiﬁﬂ(w-r-si:ﬂ]:ina-(-r-r-thﬂcmﬂ]
=g, r-sind-cosf+g-r-sin'@-g, - r-sind - cosd

(€, —&,)r-s5in 20 +@-r-sin’ @

-
2
a=CC/h= E:e,-z,,yﬂnza+qm=ﬁ
Angle ¥ can be found by inseming 8 = — (9% — @) = 2707 + &, in the above eq';uiun.
1 i 5
y = Sl€, = £,)5in A2T0° + 0) + @ 5in*(270° + @)
|
= :[E,-:}.Isintlﬂﬂ'+lﬂ}+¢si.n3{1‘m‘“‘+ﬂ-]
= =, - £y )sin !E-t-q:mlﬂ'
Shear strain = ¢, = & — 8 = (g, — £, ) s5in 28 + ¢(sin® # - cos” &)
=(e, — & ) sin Iﬂr—wmﬁﬂ
Compare the resulis with bi-axial and shear stress conditions (Eg. 2.206).
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Principal strains and principal axes of strain measurements, Calculation of
principal stresses from principal strains.

Principal strains

The maximum and the minimum values of strains on any plane at a point are known as the principal strains
and the corresponding planes as the principal plancs for strains.,

To obtain the condition for principal strains, differentiating Eq. 2.40 with respoct to 8 and cquating to
ZETO,

de 1 =
E:G—E(EI—EFIZ:mH+¢-mM
of (e, —£)sin 20 = ¢ - cos 20
or tan 26 = —& (2.30)
o, =0,

Values of principal strains can be oblained in a similar way as for principal stresses:

I 1
Principal strain = S(€,+ £,) £ = 1[‘{'5'; —['_‘_;zq.,',:

)

L

As tan 20 = tan 28 = . From Fig. 2.38,
2

@
e, -, +¢°

sin26 =

It

Ey =&y

cos2f = + 7—-—, -
'I_i"'_1I —E ) +9=

Right-hand sides of both the above equations should have the same signs, positive or negative while using
them.
+ In principal planes, ¢, = (g, - c_.:lsinlﬂ - ¢ c0s 28
E;—E
= (e, -£,) C oy — o L
Jio,—o,+9*  Jio,-0,)7+¢’
# [t can be shown that the planes of principal strains are the same as of principal stresses as follows:

=0

L TG
tan 28 = =
£,—€, (VEN(o,—ve,—va.)—(c,—vo,.—vo,)]
- 1-E
Glio, - va,— vo,) = (0, = Vo, - va,)]
T-2Gi+v) 21

Gilo, - gl +v) B Ty =Ty
which is the same equation as Eq. 2.3] indicating that the planes of principal strains are the same as of
principal stresses and thus can simply be referred as principal plares.
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Mohr’s circle for strain

Moh's strain circle
For the plane strain conditions can we derivate the following relations

=17 (1)

Ex+e‘y 'E:.:_'Eyr 1 )
— _ Fh+ ) T T lcosE v — sih2 @
1 _ 1 . 1

Y = - E(ex - =, )sin28 —51.;(?:0825‘

(2]

2
Re writingthe equation(1lasbelow :

[ s, 5, | s, — S, 1 ,
- T =L Xcos28+ — Sin 28

sguaring and addingeqguations(2)and(3)

- 12 2 - _ z

- [¥] +{%%} _ {Emcz_%}.:uggg+;_msingg]

| | ! 1 .

=" -Ey)siHEE—EﬂYCGSEE]

z ) r 2
_EK+E5" +l :EI"—E'&" +':'2I!-"
F =) )

(3)

MNow aswe know th at

2 2
LR (S N £
' 2 2 2
S TETE TS
2

& -<; 2= S TS +7'2rsr

| 2 2 4
Thereforethe equation getstransformedto

- () B2

If we plot equation (4) we obtain a circle of radius [‘#] with center at [

(4)

=T =0

]



A typical point P on the circle given the normal strain and half the sheer strain 1/2y4 associated with a
particular plane. We note again that an angle subtended at the centre of Mohr's circle by an arc connecting
two points on the circle is twice the physical angle in the material.

Mohr strain circle :

Since the transformation equations for plane strain are similar to those for plane stress, we can employ a
similar form of pictorial representation. This is known as Mohr's strain circle.

The main difference hetween Mohr's stress circle and stress circle is that a factor of half is attached to the
shear strains.

Y

€

1

Points X' and Y' represents the strains associated with x and y directions with = and vy, /2 as co-ordiantes

Co-ordinates of X' and Y' points are located as follows :
1 T).'!,f
XK'= ,m—

' ¥
Y= [Ev"'_él]

In x [ direction, the strains produced, the strains produced by oy,and — 10 are sx and — vy /2



where as in the Y - direction, the strains are produced by =, and + vy, are produced by Gy and + 1y

These co-ordinated are consistent with our sign notation ( i.e. + ve shear stresses produces produce +ve
shear strain & vice versa )

on the face AB is ty+ve i.e strains are ( =y, +7¢ /2 ) where as on the face BC, 1y is negative hence the
strains are (Cey. — 1y /2 )
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Stresses in thin cylinders under internal pressure

INTRODUCTION:

We devout our attention to pressure vessels in this chapter. Pressure vessels are containers that hold
fluid under pressure. Examples are
Tanks
Boilers
Pipelines
Pressure cookers

We see tank trucks on the highways that contains all kinds of Muids, some of which are gases
under relatively high pressures. We fill our automobile tyres at workshop. The gas for this comes
from a storage tank of air maintained at high pressure. Automobile tyres themselves are pressure
vessels. Failure of pressure veéssels can cause loss of life either by sudden bursting or explosion or
by simple failure such as leakage permitting lethal or highly explosive gases to escape into ambient
atmosphere. Therefore, design of vessels containing fluids under pressure is 1o be carefully done to
avoid mishaps. We concentrate on cylindrical-shaped pressure vessels only. Figure 8.1 shows a
schematic view of a cylindrical pressure vessel.

Lonulufmlmm
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THICKCYLINDER AND THIN CYLINDER:

The walls of the pressure vessels are subjected to three-dimensional stress system (It may be recalled
that in previous chapters, we studied only two-dimensional stress system). Up to a point the designer

can assume that the stress is evenly distributed through the wall. The point up o which this
assumption holds good is greatly influenced by the wall thickness of the vessel. Table 8.1 brings out
certain differences between thin and thick cylinders.

Differences between thin and thick cylinders

Thin cylinder Thick cylinder
Tha wall thicknass is less than ona-lenth of the  The wall thickness s maone than or equal 1o one-
inner radius of the cylinder. tenth of the inner radius of the cylinder,
The radial shear siress is neglectad. The radial shear stress is considered.
The hoop stress is assumed 1o be uniformly The hoop stress varies parabolically over the
distributed over the thickness. wall thickness.
Examples are tyres, gas storage tanks. Examples are gun barrels, high-pressure vessels

in oil-refining industry,
Analytical treatment for stresses is simple and  Analytical treaiment is complex and accurale.
approximata.
A thin cylinder is statically determinate. A thick cylinder is statically indeterminate.
State of stress is membrane ie. biaxial, State of stress is triaxial,




Stress devlope in a thin cylinder:

Consider a thin walled cylinder as shown in Fig. 5.1(a). The cylinder is pressurized from inside and
its ends are closed. Of course the simplifying assumption is that the distnbution of stress on the wall
thickness is uniform. A free body is cut by a plane normal to the axis and free body diagram of this
postion is shown in Fig. 5.1(b). It is se¢en that on the free body an external force due to pressure acts
along the axis of the cylinder. Call this force P; where suffix pertains to length, indicating that P is a
longitudinal force. The freebody is marked as 1.

The axial force P acts on the closed end. To bring the body | in equilibrium the stress will be induced
on the thickness all along the circumference and force due to this stress which acts in the direction of the
axis, will oppose the axial pressure force. This stress is called longinudinal stress and will be denoted by
@

The diameter of cylinder = D

The thickness of cylinder =1

The pressure inside the cylinder = p

The longitudinal pressure force,

D? .
P= pT— 0]
| 4

The uniformly distributed stress on the thickness in the axial direction or longitudinal stress = o,
The longitudinal force due to @; across the cut circumferential arca,

T, = o, xDr (i)
Myand T acting along the length keep the free body in equilibrium. Hence
T,= Py
Using (i) and (ii)
2z
o mi= p —

. - 22
g o= = (5.1



Apparently o is tensile

A second free body marked 2 is cut from the cylinder of Fig. 5.1(a) by a plane which contains the
axis. This free body is shown in Fig. 5.1(c). The width of the free body is w and the fluid will exert a
force PP, as shown in Fig. 5.1(c). To counteract force P, tensile stress g, will be induced uniformly on the
thickness as shown in the Fig. 5.1(c). o, will cause a force T, on cach length segment of the cylinder,

Ty= oy tw L

This is due to the fact that pressure acting on a curved surface causes a force which is equal to the
product of pressure and projected area of the curved surface. -
For equilibrium of free body 2, P, = 2T,

2 gytw = pwD
or a, = %‘E (5.2)
It is seen that the stress @ acts along the circumference. It is known as circumferential stress or hoop
5"':-:-:-5 also seen from Eqns. (5.1) and (5.2) that
g, =20

So the failure will occur due to o ic., along the length. For this reason the longitudinal joint is
required to be made stronger than the circumferential joint.

Thus a thin eylinder pressurized from inside is subjected to two stresses, respectively along length and
circumference. Both of them are tensile in nature. These stresses will cause the volume to increase.

Strainand change in volume

The state of stress at any point in a thin cylinder is completely described by two stress componenis
and . The state of stress is referred to x and » axes where x is parallel to the cylinder axis and y is
perpendicular to this axis and passes through the point of interest.

The state of stress is shown in Fig. 5.2.

From Eqn. (3.4), the strain along the length

£= é{ﬂl - va,) m
Also strain along circumference
&= élc& - va) (i)

where E is modulus of elasticity and v is Poisson"s ratio for the matenial of the cylinder.
Using Eqns. (5.1) and (5.2)



o £(2-2)

- P
TE0-2v)

L[E .P_D)

E\Vz Vw

= fo: (2-v) (5.4)

-

Let C, and C be the circumference of the cylinder respectively after application of pressurc and
before application of pressure. Let D) and D be the corresponding diameters. Then
&= Change in circumference
Original circumference
- BDy—-rD
nD

-8-0
o
. o - Sl e
Original diameter

In other words, the circumferential or hoop strain in a pressunzed thin cylinder 15 equal to diametral
strain,
; dD
. — =g 3.5
! D & { ]

Mow consider the volume of the cylinder, ¥

3
F==D%
4

Taking total differential of both sides
dv= %.ED{JD}E +E D* (df)

Dividing left hand side by ¥ and right hand side by % D
&, .4
v [ |

From basic definition [as given by Eqn. (5.5)] 2 is diametral strain and ﬂ is linear strain in the

. D {
cylinder.
Hence % =26+ (5.6)

It must be noted here that ¥ 15 the volume of the space in the cylinder and not the volume of the
material which makes the cylinder. Fwill be the volume of any fluid contained in the cylinder, Thus 4V

will be the change in volume of the fluid which is filled in the cylinder or i_—lr will be the valumetric
| strain in the Auid that pressurizes the cylinder.



Using Eqns. (5.3) and (5.4) in Eqn. (5.6)
dv  2pD

g
=P i -2
Pt vt

_ PD
= —(4-2v+1-2v
4E ( )
= PD s
M (5—4v)
or change in the volume of fluid filled in a cylinder of diameter £ under a pressure of p,
o 20
dF=FV—(5-4v
&E ( )
Using Eqns. (5.3) and (5.4) in Eqn. (5.6)

dV  2pD fol
ezl poyef-2
> = Lo e-v+Ena-2)
_ pD
=—(4-2v+1-2v
4I'E{ )
_ mD
= _—(5-4
4.'E{ V)
or change in the volume of fluid filled in a cylinder of diameter £ under a pressure of p,

_pPD
dVFf=Fi=(5-4v 5.7
P (s-4v) )
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thin spherical shells under internal pressure, stress in cylindrical shell with
hemispherical ends

THIN SPHERICAL SHELL:

Spherical storage tanks are also used frequently. The thin shell will satisfy the same condition for
distribution of stress on the thickness as the thin cylinder, that is stress over thickness is uniform. For
a sphere of internal diameter D and thickness ¢ the ratio D/t must be greater than 20 to satisfy the
condition of uniform distribution of stress across the thickness and then the sphere is treated as thin.
Apparently because of symmetry of spherical shell in all directions the stress at any point will have
equal components and both will be tensile if pressure acts from inside. A sphere and state of stress ata
point are shown in Fig. 5.12(a).

A hemispherical free body in which the thickness along a circle of diameter equal to the diameter of
sphere is shown in Fig. 5.12(b). The internal force developed on the thickness will act perpendicularly
as shown. The bursting force P is derived from pressure.,

T=oxDi

Diamater = D
‘Wall thicknoss = [

Fig.5.12
Let p be the intemal pressure
D be the diameter of sphere and
1 its thickness.
X
Then P % (i)
fi]
“"EJT (5.13)

If another section perpendicular to the one shown in Fig. 5.12(b) is taken and another hemispherical
free body is considered the stress on the exposed circular periphery will be perpendicular 1o ;. Call this
stress . Equating the bursting force with the force caused by &, will result in

pD
- 5.14
& (5.14)
Thus aq-c:;-;L:J

Hence at any point in the shell of the sphere two mutually perpendicular direct siresses will be acting.
There is no shearing stress associated with o, and o as the conditions of equilibrium are satisfied.
Hence these two are principal stresses. Since both oy and o, act along the spherical surface, they are also
called hoop stresses and may be denoted by &,. As o, is acting away from the exposed circular section
of the hemisphere in Fig. 5.11(b) it is tensile in nature.

Finding maximum shearing stress in this situation may be tricky. One must remember that at any
point on the thickness in a third direction which is radial must be considered for stress acting in this
direction will contribute to maximum shearing stress, T,

g™ ;“’ =0 (5.15)




will give maximum shearing stress in the plane of the shell only, However, rememberning that the outer
surface (Fig. 5.12) is free from any stress then in a radical plane at any point 2 on the outside of the shell

there exist two principal stresses o and zero giving

o -0 o
fuz"'_="' (5.16)

2 2

Also remembering that on the inner surface pressure is acting and thus in a radial plane at a point 3

on the inside of a shell there exist two principal stresses o, and —p; giving

Lol o o+ ¥
Ts™ |;F}=| F

2
-0 .p
Ixdy 2
.-.E-Ex.l-.-[[.-bi{]
4 2 D
.:EL].'.ﬂ]
2 D
.l

Togy 3 Will be equal to 7, 5 if D is negligible in comparison to 1. This is possible for very thin
shells in which #D < E]E In the limiting case of thin shell where ¢/D is just 1/20, 4¢/D = 0.2 and if it is
neglected the maximum shearing stress will be underestimated by 16.7%. Similar, analysis can be done
for thin cylinders also.

Figure 5.13 illustrates the positions of points 2 and 3 on the outside and inside surfaces of a spherical
shell element A through which intersects a radial plane 8. This radial plane produces a section abed in
the element. The line be is on the outside and the line ad is inside the element. Point 2 is on be whereas
point 3 is on ad. The states of stress at points 2 and 3 in the plane S are also indicated in Fig. 5.13.

Volume Change in Spherical Shell

The volume of a sphere of diameter [

1
=—_gD?
&
or F= izﬂ’
3
If R is the radius,
a Ep?
dD 2
o dv _® D'xdD
¥ 2 T
f
: av _ydD 3R
Le. ? D = R

(3.17)

(5.18)

which means that volumetric strain in a thin spherical pressurized vessel is three times the diametral or

radial strain.

It is not difficult to show that the hoop strain in the sphere is equal to radial or diametral strain. It was

shown in case of a thin cylinder in Sec. 5.2. Thus



or E*- EEL{I—]F}H—
dv 3
: & 2w
=D,
222 (1-v)

Cylindrical Vessel with Hemispherical Ends:

Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical and
hemispherical portion is different. While the internal diameter of both the portions is assumed to be equal

Let the cylindrical vassal is subjected to an intemal pressure p

I
S BiEARRE

For the Cylindrical Poartion

hoop or circumferential stress= o, ‘' here synifies the cylindrical portion
— pd
=
longitudnal stress= o, o
= kd
At
hoop or circurmnferential strain s, = Tue _ ,%c o pd [2—#]

E E 3t,E

o
or =, =;:T[2-u]

For The Hemispherical Ends:




Because of the symmetry of the sphere the stresses set up owing to intemal pressure will be two mutually
perpendicular hoops or circumferential stresses of equal values. Again the radial stresses are neglected in
comparison to the hoop stresses as with this cylinder having thickness to diametre less than1:20.

Consider the equilibrium of the half [| sphere
Force on half-sphere owing to internal pressure = pressure X projected Area

= p. nd/4
Resisting force = oy . md.t,
z
p. rd =ay.ndt,

= oy (for sphere)= %
1

d d
_ﬁ?p-u] or fe,, = L [1- ]

similarly the hoop s.trajn=%[a. - v.a.]=%'[1 - i.-']= . ﬁ

Fig [ shown the (by way of dotted lines) the tendency, for the cylindnical portion and the spherical ends to
expand by a different amount under the action of internal pressure. So owing to difference in stress, the two
portions (i.e. eylindrical and spherical ends) expand by a different amount. This incompatibly of deformations
causes a local bending and sheering stresses in the neighborhood of the joint. Since there must be physical
continuity between the ends and the cylindrical portion, for this reason, properly curved ends must be used

for pressure vessels.
Thus equating the two stramns 11 order that there shall be no distortuon of the junction

pd __pd t, _1-v
o Dapl =t (= =_ "
41,E[2 ] 1] or t, 2-v

But for general steel warks v = 0.3, therefore, the thickness ratios becomes
2/t =0.71.T or

El =24t

i.e_ the thickness of the cylinder walls must be approximately 2.4 times that of the hemispheroid ends for no
distortion of the junction to occur.
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wire winding of thin cylinders

wire winding of thin cylinders

Whenever a thin pipe is wound with a wire under tension, at a close pitch,
compressive stresses will be initially set up in the pipe section. If, now, the pipe
is subjected to internal fluid pressure, the bursting force will be resisted by the
pipe as well as the wire each offering tensile stresses. The final hoop stress in
the pipe material will be the hoop stress due to internal fluid pressure minus the
initial compressive stress. Hence the final stress will be less than if the pipe was
unwound one.

The final tensile stress in the wire is equal to the tensile stress due to the
internal fluid pressure plus the initial tensile winding stress since the wire is
initially under tension. Thus the wire wound pipe will be stronger as it will carry
a greater internal pressure for a given permissible tensile stress. Consider a
cylinder of diameter D and wall thickness r around which a wire of diameter d
is wound closely under a tensile stress of o,. The cylinder is subjected to an
internal fluid pressure p.

Let E_ = Modulus of elasticity for the material of wire
E, = Modulus of elasticity for the material of pipe
Let us consider a unit length of the cylinder. Number of turns of the wire

per unit length of cylinder = &

Cross-sectional area of the winding wire (both sides) per unit length of
- X l_m™
qlmdcr-2x4d xd_ 5
(4] “

)
If o,, is the tensile stress in the winding wire without fluid pressure inside the

cylinder, then total tensile force in the wire % X O,

This tensile force induces a compressive stress g, in the cylinder.

%5

D'F ﬂ'n

(a) k)



Total cross-sectional area subjected to compression =2 xrx 1 = 2z

Total compressive force in cylinder resisting the total tension of the wire =

ZIXI‘J'P
md
2% G,= = %0,
md
or O",="EXU,,.

When the fluid is admitted inside the cylinder the bursting force is resisted
by newly developed tensile stresses ﬂ’; and U,! in the cylinder and in the wire

respectively.
Bursting force = Resisting force of pipe + resisting force of wire rings.
pxDx l=cr;x2:xl+a",x%
pD=G;x2t+GJK% (i)
Initial strain of cylinder {without internal pressure) due to winding of wire
o
= E_P (ii)
P
1If o is the longitudinal stress then final strain in the cylinder
1
o, 1 0
P R ¥ Rl 13 i
“E, m E, =
. Change in strain on the surface of cylinder
_% _ 1,9, %
E, m E, E,
1 [ |0y ] .
= —|o,-—"-0 (iv)
E,l'? m F

But change in strain of winding wire due to internal pressure

|
o, O, 1 1

= LW - c, - O,
E, E, E, @ = )
Since the changes in strains in the cylinder and in the winding wire are equal
1 [ L _Tg ] | 1
e T ) (o, - &) (v)
E,L" m 5 E, " "

If o,, and g, be the final stress in the wire and in the cylinder, then we have

0,.= a, + o, both are tensile

. I o . o
and Gy, =G, — 0, T, IS tensile and @, is compressive.



Lect-15

Shear force and bending moment. Types of load and Types of support. Support
reactions, Relationship between bending moment and shear force

INTRODUCTION OF BEAM AND TYPES OF BEAM :

Beam is a structural component which carries the loads transverse to
its longitudinal axis and is supported at its two ends. The longitudinal
axis of a beam is the line that joins the centroidal points of all the
transverse sections along its length. In beams the loads, the reactions
and the longitudinal axis of the beam, all lie in one plane, called the
plane of bending. Sometimes the loads on the beam may not be truly
transverse to its axis and so in that case, in addition to the transverse
loads, the beam will have axial force also. The section of the beam
along its axis may be prismatic or non-prismatic. Prismatic beams
have transverse sections that remain uniform throughout their spans.
Non-prismatic beams, on the other hand, have sections that may vary
in accordance with certain geometric pattern along their span lengths
or that may vary in steps or may vary in an at-random fashion. The
distance between the centre to centre of the supports is called the span
of the beam and the clear distance between the supports is defined as
its clear span.

Depending on the way the beams are supported, they are categorised
as:

(1) Cantilever Beam: This is a beam which has one end fixed 1
position and direction and the other end is free. The fixed support o
the cantilever is also called an encaster or a built-in support. At the

fixed end of a cantilever beam three reactions can develop
corresponding to the three displacement components that this support
checks and these reactions are necessary and sufficient to support any
one or more loads acting on the cantilever and maintain its stability.
At the free end no reaction develops as at that end no restraint is
provided either to the rotation or to the translation that may occur
there.

(2) Simple supported beam: A beam, having one end hinged and the
other end supported on a roller or a knife edge, is called a simply
supported beam. As a roller support can provide restraint against one
vertical movement only one vertical reacstion is possible at this type
of the support. On the other hand, since, a hinge restrains both the
horizontal and the vertical movements at the support point it gives
rise to two reactions correspondingly, i.e., one horizontal and the
other wvertical. So in a simply supported beam a total of three
reactions, i.e., two vertical and one horizontal, develop at the two
supports. These three reactions are necessary and sufficient to sup-
port all the possible load combinations likely to act on the beam.



(3) Overhanging beam: A simply supported beam, with one of its
ends overhanging on one side of a support or both of its ends over-
hanging beyond the corresponding supports, is called an overhanging
beam. For the same overall length of a beam, the overhangs reduce

the effective span of the beam and so make the design of the beam
economical when compared to the design of a simply supported beam
of the same length under the same loads.

One thing that is common to the type of the beams, discussed
above, is that in all of them there is a single span, two supports and
three independent reaction components that depend on the type and
the magnitude of the loads acting on the beams. Also all the loads and
the reactions acting on the beams form a coplanar system of forces.
Since this system needs three equations of statics to be satisfied for
its equilibrium the three independent reaction components acting
on the beam, as a free body, can be directly obtained from the three
equations of equilibrium. Such beams are, therefore, statically
determinate. These beams are shown in Fig. 4.1.1.

Beams in which the number of the supports or their nature is such
that they impart more than three reactions then such beams become
externally indeterminate. Some such beams are:

(a) Propped cantilever: It is a cantilever beam which is propped or
simply supported at the free end. This type of the beam, therefore, has
one fixed support and the other roller or a knife edge support. Since in
all four reactions develop at the two supports of the beam and only
three equations of equilibrium are awvailable for analysing such
beams, by considering them as a free body under a general loading
system, a propped cantilever becomes external indeterminate beam
of the first order.

(b) Fixed, encastre or buili-in beam: This beam has both of its ends
fixed in position as well as in direction. In all six reactions develop in
this beam at both of its supports and so its external indeterminacy
becomes two under parallel vertical load systems and three under any
other general load systems.

(c) Continuous beam: A beam, having more than one span or more
than three supports, is a continuous beam. More the number of
intermediate supports, more and more will be the reactions. For
stability and equilibrium of a continuous beam, a minimum of one of
the supports must be hinged and all others supports must be the simple

supports or the roller supports. A two span continuous beam, as such,

has four reactions and that makes it externally indeterminate beam of
the first degree.



TYPES OF LOADS :

Types of loads acting on beams:

A beam is normally horizontal where as the external loads acting on the beams is generally in the vertical
directions. In order to study the behaviors of beams under flexural loads. It becomes pertinent that one must
be familiar with the various types of loads acting on the beams as well as their physical manifestations.

A. Concentrated Load: It is a kind of load which is considered to act at a point. By this we mean that the
length of beam over which the force acts is so small in comparison to its total length that one can medal the

force as though applied at a point in two dimensional view of beam. Here in this case, force or load may be
made to act on a beam by a hanger or though other means

B. Distributed Load: The distributed load is a kind of load which is made to spread over a entire span of
beam or over a particular portion of the beam in some specific manner

illllllq‘llHHi

-

OR




EUNIFDRM VARYING LOAD

some times the load acting on the beams may be the uniformly varying as in the case of dams or on inclind
wall of a vessel containing liquid, then this may be represented on the beam as below;

Uniformiy
Varying
Loads

Ps 3

Concept of Shear Force and Bending moment in beams:

When the beam is loaded in some arbitrarily manner, the internal forces and moments are developed and
the terms shear force and bending moments come into pictures which are helpful to analyze the beams
further. Let us define these terms

P lF‘: Py
TR' ja) TRJ
I R ia) | R
¥ P: P

b

Ri

___________._}



MNow let us consider the beam as shown in fig 1(a) which is supporting the loads Py, P2, P2 and is simply
supported at two points creating the reactions R, and R; respectively. Now let us assume that the beam is tc
divided into or imagined to be cut into two portions at a section AA. Now let us assume that the resultant of
loads and reactions to the left of AA is OF vertically upwards, and since the entire beam is to remain in
equilibrium, thus the resultant of forces to the right of AA must also be F, acting downwards. This forces [IF
is as a shear force. The shearing force at any x-section of a beam represents the tendency for the portion of
the beam to one side of the section to slide or shear laterally relative to the other portion.

Therefore, now we are in a position to define the shear force ~F' to as follows:

At any x-section of a beam, the shear force ['F' is the algebraic sum of all the lateral components of the
forces acting on either side of the x-section.

SIGN CONVECTION |

mn

F

The resultant force which is in the downward
direction and is towards the R.H.5 of the
X-section is +ve Shear Force,

The resultant force which is in upward
direction and is towards the L.H.S of the
X-gseclion is +ve Shear Force

Positive Shear Force
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The resultant forcos whilch are in he dosrvsward The resuliant Torcs which are in upwa
direction and iz on the LLH.S of the X.section i direction and iz on the R.HUS of the
im ewe Shear Force : Hepaction ia -ve Sheor Foroes.
L

Negative Shear Force



Sign convection of Bending moment

&Y 1 ¥
R
E Resultant moment on the R.H.S postion

of thie X-section i C.C.W, then il may be
considersd as positive B.M

Resultant moment on the LH.S of
the X-section is C.W, then itis a
pasitive B.M

Positive Bending Moment

A

B

Faauitant momant on e 1 H, S of
the X-mootion is W, then it is @
nergative B.M

Rosultant momesnt on the L H S of
e M-section s COOW, then L is o
rasgative B M

Negative Bending Moment

Some times, the terms [1Sagging' and Hogging are generally used for the positive and negative bending
moments respectively.
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Bending Moment and Shear Force Diagrams:

The diagrams which illustrate the variations in B.M and 5.F values along the length of the beam for any fixed
laading conditions would be helpful to analyze the beam further,

Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force [ |F' varies along
the length of beam. If x dentotes the length of the beam, then F is function x i.e. F(x).

Similarly a bending moment diagram is a graphical plot which depicts how the internal bending moment M
varies along the length of the beam. Again M is a function x i.e. M(x).



, Relationship between bending moment and shear force

The construction of the shear force diagram and bending moment diagrams is greatly simplified if the
relationship among load, shear force and bending moment is established.

Let us consider a simply supported beam AB carrying a uniformly distributed load wilength. Let us imagine
to cut a short slice of length dx cut out from this loaded beam at distance (%' from the origin 00"

- ‘\; ..

v £
o \
i > 2 Considersd 1o

he detached

M

Let us detach this portion of the beam and draw Its tree body diagram.

w flength

M#5M

F+iF

T —

The forces acting on the free body diagram of the detached pertion of this loaded beam are the following
* The shearing force F and F+ &F at the section x and x + 5x respectively.
* The bending moment at the sections x and X + &x be M and M + dM respectively.

+ Force due to external loading, if (1w’ is the mean rate of loading per unit length then the total loading on
this slice of length 6x is w. &x, which is approximately acting through the centre [ .c’. If the loading is
assumed to be uniformly distributed then it would pass exactly through the centre "',

This small element must be in equilibrium under the action of these forces and couples.

| Mow let us take the moments at the point ¢, Such that



M+F. 2+ (F +6F). 2= M+am

G &x
F.2+(F =M
= +I‘I +|5Fl'| 5

- F.Ez_x +F_62_I+EF.62—X= &l [ Meglecting the product of
&F and 6x being small quantities ]
= F.6x = 6M
e =ﬂ
G
Under the limits §x— 0

F=2 e (1)

Re solving the forcesvertically we get

w.bx +(F +6F)=F

= w=—E
&
Linder the limits 6x— 0
— w=—£ur —i(ﬂ
dx dx "dx
dF d*M
W=—H=—? [:2)
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Shear Force and Bending Moment diagrams of cantilever beam carrying point
loads,UDL,uvl and related problem

1. Draw the shearforce and bending moment diagram of cantilever beam subjected to point
load W at free end

At a section a distance x from free end consider the forces to the left, then F = -W (for all values of x) -ve
sign means the shear force to the left of the x-section are in downward direction and therefore negative

Taking moments about the section gives (obviously to the left of the section)

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the anticlockwise directi
and is therefore taken as *ve according to the sign convention)

so that the maximum bending moment occurs at the fixed end .e. M = W I

From equilibrium consideration, the fixing moment applied at the fixed end is W and the reaction is W. the
shear force and bending moment are shown as,

W " V%

.xl

i] 7,////?;////,//% S.F.Diagram

%\M’ —=B M. Disgram
1

2. Draw the shearforce and bending moment diagram of cantileverbeam subjected to udl on

whole span

Lot the load be distributed over the whole length of the
beam, the leading being w per unit run (Fig. 9).

FRPRE T

Consgider the section XX at a distance x from the free B o A
end A. I
S.F. ntx-Slz-w.: (a) Beam
2 h
Wi
BMatXeM s-w.x. 22X £ Wt
2 2 [b) S.F. dingram

Thus we find that the variation of the shear-foree is ac-
cording to alinear law, while the variation of bending moment ¥

is nccording to parabolic law, wiiz w12
At z=0, 8 =0 and M =0 l (o) B.M, dingram
At x=], S‘=—nrl and M*n—-u'l—tf-_ Fig. 9

2



3.5F and BM of cantilever beam subjected to uniform varing load

Fig. 14 showsa a cantilever AR of length { carrying a load whose intensity varies uniformly from
zero at the free end to w per unit run at the fixed end. Lot the intensity of loading at XX, at a distance x
from the free end A be w, per unit run.

Lowym %.:ﬁm&nhunﬁuﬂhﬁhumuﬂhmhr&ammu the free end to w ot the

+  Load acting for an elemental distance dx from x = w, . dx, thus the total load acting for any
distance between x =g and x = b,

zmb
- 2 oy .z

= area of load diagram between x =a and x = b,

Hence we arvive at an important conclusion that the tatal distributed load acting on any segment
equals the area of the load diagram on that segment.

L B R R R A R S

—5—

[ ]
H
[ ]
#
]
[ ]
+
L]
]

(b) S.F. diagram
i ] "
wi"l! wx /6l
J._ Cubic curve
(c) B.M. diagram

S.F. and B.M. at distance x from the end A are given by
S, = Area of the load diagram between X and A

1 1w wx?
'-—2".-"+wl---+x.T il B —

M_ = Moment of the load acting on XA about X
= Area of load diagram between X and A = distance of controid of this diagram from X

wx® x __ wx®
21 "3 6l
At x=0, S, =0 and M, =0

2
AL xs=l, .Sltlln-E and Hj;-ﬂ
2 6

The 5.F. changes following a parabolic law while the B M. changes following o cubic law.
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Shear Force and Bending Moment diagrams of simple supported beam beam
carrying point loads,udl

Shear Force and Bending Moment diagrams of simple supported beam beam carrying point
loads

2.6.1. The Point Load is at the Mid-point of Simply Supported Beam. Fig. 2.25
shows a beam AR of length L simply supported at the ends A and B and carrying a point load
W oat its middle point .

The reactions at the support will be equal tn? as the load is acting at the middle point

of the beam. Hence Ry = Ry = F-
Take a section X at a distanee x from the end A between A and C,

. : L z = . -
The reactions at the support will he equal m? as the load is acting at the middle point

of the beam. Henee R, = Ry = Er-
Take a section X at a distance x from the end A between A and C.

Let F, = Shear force at X,
and M_= Bending moment at X,

Here we have considered the lef? porfion of the section. The shear force at X will be
equal to the resultant force acting on the left portion of the section. But the resultant force on

the left portion i:BE acting upwards. But according to the sign convention, the resultant force
on the left portion acting upwards is considered positive. Hence shear force atX is positive and
its magnitude is —‘25.
W

F# = +-:';|_._

Hence the shear force between A and C is constant and equal to + % :

Now consider any section between C and B at distance x from end A. The resultant force
on the left portion will be

w w
- Wl==.
ol e
This foree will alsoe remain constant between C and B. Hence shear force between O and
B ie equal to - % :

At the section C the shear force changes from +% tn—E.

2
The shear force diagram is shown in Fig



A B
*

] L2 -

{a) R, _% L » Hﬂ--g
I
:'J’(JJ’ff’f’f,fﬂ}f,’f’(f’ﬂr
qr T
{b} Fecersseiceseiceiriiissiid]
A c

BLM. diagram Base ling

Bending Mament Diagram
(i) The bending moment at any section between A and C at a distance of x from the end
A, is given by

M=R,x or H,-+}-;-,x i)

({B.M. will be positive as for the left portion of the section, the moment of all forces at X
is clockwise. Moreover, the bending of beam takes place in such a manner that concavity is at
the top of the beam).

At A, x = 0 hence HA-%IB-D

L W L WxL
ﬁtﬂ.:-zhmme Hc-—ui- 3

From equation (i), it is clear that B.M. varies according to straight line law between A

and C. B.M. is zero at A and it increases to L atC.
{i1) The bending moment at any section between C and B at a distance x from the end A,
is given by

H.zﬂd,_t—w's[qt—%]
L WL 2x
= —.x— W W —— = —
x x+ X 2 2
WL W _ L WxL
.ﬁ.tﬂ',:-—hl!nm HC-T—-? E- 3

At B, x = L henee MBI%—%!LBu_ |

Hence bending moment atC is -I%'- and it decreases to zero at B. Now the B.M. diagram
can be completed as shown in Fig. 2.25 (c).



SFAND BM OF SIMPLE SUPPORTED BEAM CARRYING POINT LOAD AT 5SOME DISTAMCE
FROM SOME END BEAM

a beam AR of length L, simply supported at
" the ends A and B and carrying a point load W at C at a distance of ‘a’ from the end A.
Let R, = Reaction at the support A, and
R = Reaction at the support B.
First calculate the reactions, by taking moments about A or about B.
Taking moments of the forces on the beam about A, we get

RyxL=W=xa
W.a W.a
R=—— and R, =W-R,=W-—-——
B L A B L
=w[1_%]=w[f'£“]=w:b (v L-a=h)

Consider a section X at a distance x from the end A between A and C.
The shear force F_ at the section is given by,

W.b :
FS=+RA=+T ...[L}
(The shear force will be positive as the resultant force on the left portion of the section is
acting upwards).
W.b

The shear force between A and C is constant and equal to 7

Now consider any section between C and B at a distance x from the end A. The result-
ant force on the left portion willbe R, - W

W.b b-L L-b W.a
—-W=W|—(=-W|—|=—— v L-bs=
or 7 [ 2 ] [ T J T { a)
The shear force between C and B is constant and equal to - ?. At the section C, the

shear force changes from % to - -‘%E, The shear force diagram is shown in Fig. 2.26 (b).



Bending Moment Diagram

(i) The bending moment at any section betweenA and C at a distancex from the end A,
is given by

M=R xx=+22 (Plus sign due to sagging)
AtA.x=ﬂhen¢eMA=? x0=0
AtC,x:ahmeMc=F1£.ﬂ=wfrb
W.a.b

Hence the B.M. increases from zero at A to

at C by a straight line law. The B.M.

iz zero at B. Hence B.M. will decrease from Wb

law. The B.M. diagram is drawn in Fig. 2.26 (c).

From the shear force and bending moment diagrams, it is clear that the B.M. is maxi-
mum at C where the 5. F. changes its sign.

at C to zero at B following a straight line

SEAND BM OF SIMPLE SUPPORTED BEAM CARRYING UDL IN WHOLE SPAN

A BEAM AB OF LENGH L SIMPLY

aupp;rtaea at the ends A and B and carrying a un‘gfurmly distributed load of w pe‘;' unit lané‘tj
over the entire length. The reactions at the supports will be equal and their magnitude will by
half the total load on the entire length.

Let R, = Reaction at A, and
Ry = Reaction at B
R =R, =——
A B 9
Consider any section X at a distancex from the left end A. The shear force at the sectior
(i.e.,, F ) is given by,
F;=+R4—w.x=+%—~w.x wlil

From equation (i), it is clear that the shear ?'nm varies according to straight line law.
The values of shear force at different points are :

At A, x =0 hence F =+w.L_w.ﬂ= w.L

& g 2 2
At B, x =L hence FB=+£'2—L-—w_L=_w_:;
At('.',:c:%henoe F¢=+w;;'—w.%=n

The shear force diagram is drawn as shown in Fig. 2.28 (b).
The bending moment at the section X at a distance x from left end A is given by,

M,=+Ri.x—m.:l:,§

2 L
o SR [ Ry== ] i)




From equation (i), it is clear that B.M. varies according to parabolic law.
The values of B.M. at different points are :

AtA, x=0 hence Mﬁ=%.o-”—2'9 =0

L

il
(=]

AtB,x=L hence MB=WT'.L—%.L*

L
ﬁtC,.‘::E

c
B.M. diagram Base ling .
Thus the B.M. increases according to parabolic law from zero at A to + w.L at the
middle point of the beam and from this value the B.M. decreases to zeroatB a ing to the

parabolic law.
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Shear Force and Bending Moment diagrams simple supported UvL,moment

ma!'urm ImlB.hLDulml for a Simply Supp-orted_ Bem Carrying a

=——— e — i i i — e e— o —

Uni!orml;r\"nryinglnndﬁw Zero at One End to w PannltLangt.hnt the Other
End. Fig. 2.34 shows a beam AB of length L simply supported at the ends A and B and carry-
ing a uniformly varying load from zero at end A to w per unit length at B. First calculate the
reactions R, and Ry

Taking moments about A, we get
L) 2 w.L ]
RgxlL = (T]EL [Tull'lluld[- > ]iucungjl,l'mm.i]

I'IB.I.E_‘!'J
; w.lL
& Ry==3—
and Ry = Total 10ad on beam =R = “’2'1' = "’5’* - "”L;_L
Consider any section X at a distance x from end A. The shear force al X is given by,
Fy= Ry ~losd on length AX = 2L _ X X
AY.CX x.w.x
(Lm:lnn.luf'- i 7
wl  wa’
"6 ~ 2L A1)
Equation (i) shows that 5.F. varies according to parabolic law
w.lL L
ALA, x = 0 hence, Fy=™s -%xn."”ﬁ
w.L w.l? w.L w.lL w.L-3w.L 2w.L w.L
AlB, x =L, hence, Fs- r - 7 = 3 — 3 = r3 = - 3 = - 3

The shear force is + E&'E al A and it decreases o — -“;—'L- al B according to parabolic law. Somewhen

between A and B, the 5.F. must be zero. Let the 5.F. be zero to a distance x from A. Equating the 5.F. to zen

in equation (1), we gel

02l w2 we _ wl
6 2L T A6
2
or f-%xgng—

,r-:ji'?'ﬂn'.jﬂ.[,
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(e)

B.M.DIAGRAM

B.M. Diagram
The B.M. is zero at A and B.
The B.M. at the section X at a distance x from the end A is given by,

M, = Ryx — Load on length AX . §

[ *" Load on AX is acting al ‘%fmm;’t’)

wi i
? .

h
2[5

Equation (if) shows the B.M. varies between A and B according 1o cubic law,
Max. B.M. occurs at a point where S.F. becomes zero afler changing its sign.

That point is at a distance of % from A. Hence substituting x = % in equation (i), we get maximum

B.M.
3

Max. B.H,-%,%_E‘%r(%]

wk?  wil?

_w? dw. L-wl?  wi?
6v3 183

T 18V3 93

Simply Supported Beam Subjected to
External Moment M, at x = a from Left Support

Consider the beam A8 of span L subjected to an external clockwise moment at a point, -
distance “a" from support 4 as shown in Fig. 3.13a.

Taking moment about B, and downward reaction at 4 as positive



M
R,L—My=0 or R,=—"2L (Note: R, is downward)

My

~ Hence SFD is shown in Fig: 3.13b.
At section x—=x, in portion lzft of the section.

_ M= HR,.I=-fo (Linear variation)
Atx=0, M=0
Atx=a, M = —%EE

To the right of the sectior t-—a,

: M
=20 x 1+ M, =M,[1..%] Li jation)
' Mgb
- Atx=a, H=Mu[l—:]- =

andat x= L, M-—;H.-_,I- -—vi--|=0
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Shear Force and Bending Moment diagrams of over hang beam carrying point
loads, UDL, moment and point of inflection

Overhanging Beam Subjected to Concentrated Load at Free End

Let ABC be the overhanging beam subjected to a concentrated load W at free end as

w
: _—
? N L - ; + .l—lll
Ry Ry

() Space Diagram

S
3 1 1
) {b) SFD
Y
=¥l
_ @emp:
Taking moment equilibrium condition about B, we get
R,L=Wa [Note: R, is downward]
Portion AB: Measuring x from 4 and considering left hand side forces, we get
F= —R,,=—'H—:1 (Constant)
For portion AB, SFD is negative
M=-R,x
-— -H% x (Linear variation)
Atx=10, M=0
Atx=L, M= -EL=-H"H
BMD for this portion can be drawn.
Portion BC: Measuring x from free and C,
F=W (Constant)
.. SFD can be drawn for this portion.
M==Hx (Linear variation)
Atx=10, M=0
Atx=a, M=-Wa

BMD for this portion also can be drawn.



Overhanging beam with equal overhangs on each side and loaded with a
uniformly distributed load over its entire span

X f‘(—- wiunit lengih

0 0 O A

A - p———

() B.M. Diagram )

(+<4)

{ef) B.M. Diagram

{e) B.M. Diagram

Reactions at B and C
Take moments of forces about B,

woeagx % +Rexl -w{!+a]m

Wﬂz

= *Rd = ‘—2" (7 +d + 2la)

wil % 2a)

2
But R+ R =w(l+2a) or Ry = 1:'{:':21:1]{1.]

Ry = (M



Calculations for shear force

Consider a section XX of the beam at a distance x from 4. Shear force at the section is
F, =—wx

Shear force at A,

F, =0 (forx=0)
Shear force at B,

Fg =-wa (forx=a)
Shear force just to the right of B

=-wa+ Ry

=—wa+ %(Hzm

Shear force at C is

= ﬂ + ¥ (I + 2a)
2 2
= wa
Shear force at D is
Fp=wa-wa=0
Calculations for bending moment

Bending moment at the section is

x
M, = —wx.—
2

Bending momentat 4, M, =0 (forx=0)



Bending moment at B is

a
M, =- -
» wea: s
__wa
2
2
Bending moment at C is
Mg =-w(a+]) “';” +Ryx1

w 2. W
=—— (atl)f+ = (I+2a)x/
2[ ) 2{ )

Bending moment at D is
My =0
Shear force is zero at a distance lﬂ + ;—J from A. It is the position of maximum bending moment.

I'he maximum bending moment is given as

Moy ™ —w[a+%]-[a+%)~%+ﬁ‘,[a+%—a)

Iy w I
e — - -+ 2a) =
[a+ ]4-2{-:- }2

Case |

When a < %, then M, will be positive.

Case Il

When a = %,lhean=ﬂ

w(l .
2|4 =0
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Theory of simple bending of initially straight beams, Bending stresses ,section
modulus

BENDING Theory

It is interesting to note that Galileo [1564-1642] was one of the first sciemtists to make a theoretical
investigation of the problem of bending. He attempted to determine the breaking load for a cantilever
in terms of the cross sectional dimensions of the beam. Charles Augustin de Coulomb
[1736—1806], a French engineer, was first to explain the correct relationship between the bending
moment and the moment of resistance of a beam. The formulation of simple bending theory (also
termed engineer's bending theory) is due to French scientists Euler and Bernoulli. The theory is
based on some simplifying assumptions but has been found to yield satisfactory results.

ASSUMPTION OF BENDING THEORY

The assumptions made in simple bending theory are
1. The material of the beam is homogeneous, isotropic and has the same properties in tension
and compression.
The material obeys Hooke's law.
The beam is initially straight and bends into an arc of a circle.
The radius of curvature is large when compared to the span of the beam.
The beam bends with respect to one of the principal axis.
The beam is subjected to pure moment and deformations owing to shear are neglected.

Transverse sections of the beam that are plane before bending remain plane and normal to
the beam axis even after bending.

e B L O S

All the assumptions are self explanatory; however, the last assumption needs little clarification.
This assumption emphasizes that the planes such as AA, BB, CC and DD (Figure 4.9) before
bending remains to be planes even after bending. That is, each plane revolves about its intersection
with neutral plane xx. The meaning of this assumption is hidden in the fact that the deformations

All the assumptions are self explanatory; however, the last assumption needs little clarification,
This assumption emphasizes that the planes such as AA, BB, CC and DD (Figure 4.9) before
bending remains to be planes even after bending. That is, each plane revolves about its intersection
with neutral plane xx. The meaning of this assumption is hidden in the fact that the deformations

Planes before bending

#

I e
i AT AT AT
A “BACHDL | X
STt 1
HRBHERRYZ A .
LI EREEE . o
A== rrqr=v—at--
f’ L4
ra :l{/{l{r!
LI‘ T LI‘ [t
ABCD

and consequently the stresses must increase uniformly from zero at the neutral plane to a maximum
at the outer fibres. If this assumption is not realized, what we get is warped planes as shown in

FIGURE



DERIVATION OF BEMDING EQUATION

Consider a beam of span L, subjected to concentrated moments at the ends as shown in
Figure 4.11(a) (we are aware that this type of loading will enable the beam to be in pure bending).
Consider a portion of the beam bounded between two sections 1-1 and 2-2, This segment is
blown-up in Figure 4.11(b} for clarity. Consider any layer AB located at a height of v from neutral
axis.

Neutral layer
\ A ,Any layer

(b) Blown-up elemeant

The strain in this layer owing to bending of the beam is
£ = (Change in length of the layer AB)(Original length of the layer AB)
S (AB-NA) L (R+v)8-R8
NA R

¥

£E= =

Since the material obeys Hooke's law, stress should be proportional to strain
fe=e
F=Ee

t
i

>l m|m W

4.1)

T e



Further, we consider the fibre AB to possess an elementary area da, on this area bending stress f

would prevail (refer Figure 4.12).

Bending stress in
[/ fibre AB

Figure 4.12 A Portion of Bent beam.
Force exerted on this fibre = fda.
Moment of this force about neutral axis = fda- v
E. o l. _E
da-y { J"-R .'F}

R
2 ; E E
Moment generated by the entire area of cross section = Ejfduzif

The above expression is nothing but the moment of resistance developed by the section. For the
equilibrium of the section, the moment of resistance thus developed must be equal to bending
moment acting at the section due to external loads and reaction. Therefore

E
M= Ef
M _E
or, T% (4.2)
Combining Eqgs. (4.1} and (4.2): # = il =%
¥

The above equation is the famous bending equation (Euler-Bernoulli’s equation). The usual
notations are
M = Bending Moment at a section (N-mm).
I = Moment of Inertia of the cross section of the beam about Neutral axis (mm*).

f = Bending stress in a fibre located at distance y from neutral axis (N/mm?). This stress could
be fi. (bending compressive stress) or fi, (bending tensile stress) depending on the location
of the fibre.

y = Distance of the fibre under consideration from neutral axis (mm).

E = Young's Modulus of the material of the beam (N/mm?).

R = Radius of curvature of the bent beam (mm).



The normal stresses in the beam are related to bending moment by considering part of the
bending equation.

=2 43)

The above equation is called the flexure formula, This formula infers that the bending siress in a
fibre is directly proportional to its distance from newiral axis.

FLEXURAL PARAMETER

1. Section Modulus: The maximum tensile and compressive stresses in the beam occur at points
located farthest from the neutral axis. Let us denote y, and y; as the distances from the neutral axis
to the extreme fibres at the top and the bottom of the beam. Then the maximum bending normal
siresses are

M M M
foe= —IyL - E =z where f. is bending compressive stress in the topmost layer.
I t
Similarly
My, M M ; z ; : i
fu= 7 E =z where fi, is bending tensile stress in the bottom most layer.
2 b

Here, Z, and Z, are called section moduli of the cross sectional area, and they have dimensions of
length to the third power (ex. mm?®). If the cross section is symmetrical (like rectangular or square
sections), then Z, = Z, = Z, and Z is called as section modulus. Section modulus is defined as the
ratio af rectangular moment of inertia of the section to the distance of the remote layer from the
neutral axis. Thus, general expression for bending stress reduces to

M
I~z

It is seen from the above expression that for a given bending moment, it is in the best interests of
the designer of the beam to procure high value for section modulus so as to minimise the bending
stress. More the section modulus designer provides for the beam, less will be the bending stress
generated for a given value of bending moment.

2. Flexural Rigidity: If we consider the other pant of the bending equation, i.e.

The product ETI is called the flexwral rigidity of the beam. The moment sustained by an element of
a beam is proportional to E[. The larger the value of El, the larger will be the moment sustained by
the beam. It is an index of flexural strength of the beam.

MODULUS OF RUPTURE

The flexure formula, Eq. (4.3) may be used to determine the bending stress in a beam loaded to
failure (or rupture) in a testing machine. Since the proportional limit of the material will be exceeded
while breaking, the siress predicted by the formula is not true stress. Nevertheless, the imaginary
siress so obtained is called modulus of rupture. It may be defined as the maximum bending siress
required to cause the bending failure of a beam. 1t is used as a yardstick to compare ultimate bending
strength of beams of various sizes and materials.



Lect-21

Position of neutral axis ,Bending stress developed in different section

Position of neutral axis

Consider a cross section as shown in Figure 4.13 of a simply supported beam. Let the area of this
cross section be A. Let da represent the elementary area of a layer located at a height of y from the

neutral axis. Let M be the bending moment acting on the section considered. The consequent bending
stress on this area be f

|- Fibre area ‘da’

N -k~ - A
= Centroid

\

Figure 413 Cross section of simply supported beam.

The force acting on the fibre = bending siress x area
=f-da

=7
R
We know that this total force is the sum of total tensile force (T) in the bottom zone and total
compressive force (C) in the zone above the neutral axis. As no external force is applied over the
cross section (T = C or T = C = 0), that would only mean

E E
The total force acting over the entire section of the beam = _[f-da = i!'y - da [ I= ]

%!}'-dﬂ':{]

o= ‘l'_.,,. xdA =0 (u%mmbﬁm]

Now y x dA represents the moment of area dA about neutral axis. Hence | y x dA repre-
sents the moment of entire area of the section about neutral axis. But we know that moment of
any area about an axis passing through its centroid, is also equal to zero. Hence neutral axis

coincides with the centroidal axis. Thus the centroidal axis of a section gives the position of
neutral axis.



BEMDING STRESS |M SYMMETRICSECTION

The neutral axis (N.A.) of a symmetrical section (such as circular, rectangular or square
lies at a distance of d/2 from the cutermost layer of the section where d is the dinmeter (for
circular section) or depth (for a rectangular or a square section). There is no stress at th
neutral axis. But the stress at a point is directly proportional to its distance from the neutra
axis. The maximum stress takes place at the outermost layer. For a simply supported beam
there is a compressive stress above the neutral axis and a tensile stress below it. If we plo
these stresses, we will get a figure as shown in Fig. 2.53.

Ty —

SECTION MODULUS OF VARIOUS TYPES OF BEAMS

1. Rectangular Section — b ———
Moment of inertia of a rectangular section about an
ixis through its C.G. (or through N.A.) is given by,
Hl
f- -'—N s S s .
Distance of outermost layer from N.A. is given by,
i
Section modulus is given by,
3 2
= ()
2. Hollow Rectangular Section
BD® bd?
Here Iz ——=— — B ——
12 12 T T
_1 pps b
-lgwn bl n% Hloe
- ) 714
b 21 ﬁ/ """"""" T
L= — /
P /
L (BD® —bd*)
. v
= [P_] Fig. 2.55 (b)
2

1
=30 [BD?® - bd®) «.(2.8)

al

"



3. Circular Section

For a circular section,
= g4 =3
I o d* and y__. 5
R 4
—d
I n
z: E‘- [E] = 32 dﬂ ---[2-9]
2
4, Hollow Circular Section
Here Is % (D4 - d¥]
D
and Ymez™ g
n 4 4
—[D* -d”]
- Z= | =84
Yimax [E)
2
n
= 32D (DA —df]  ..(2.10) Fig. 2.55 (¢)
STREMGTH OF ASECTION

The strength of a section means the moment of resistance offered by the section and
moment of resistance is given hy,

M=axZ [ EZE or M=Exf=ﬁx2where3=£]
. I ¥ ¥
where M = Moment of resistance
o = Bending stress, and
Z = Bection modulus.

For a given value of allowable stress, the moment of resistance depends upon the section
modulus. The section modulus, therefore, represents the strength of the section. Greater the
value of section modulus, stronger will be the section.

The bending stress at any point in any beam section 18 proportional to 1ts distance trom
the neutral axis. Hence the maximum tensile and compressive stresses in a beam section are

proportional to the distances of the most distant tensile and compressive fibres from the neu-
tral axis. Hence for the purposes of economy and weight reduction the material should be
concentrated as much as possible at the greatest distance from the neutral axis. This idea is
put into practice, by providing beams of I-section, where the flanges alone with-stand almost
all the bending stress.

We know the relation :
H_E M M M
Ty ® Osry=rm=g

)

where £ = Section modulus,



For a given cross-section, the maximum stress to which the section is subjected due to a
given bending moment depends upon the section modulus of the section. If the section modu-
lus is small, then the stress will be more, There are some cases where an increase in the
sectional area does not result in a decrease in stress. It may so happen that in some cases a

slight increase in the area may result in a decrease in section modulus which result in an
inerease of stress to resist the same bending moment.
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Bending stress of beams of two materials, Composite beams.

Flitch beam

Beams that arc made of more than one malterial are called composife beams. The common
examples arc (a) bimetallic becams (&) sandwich becams, (c¢) flitched beams, and (d) rcinforced
concrete beams, as shown in Fig. 10.26. Such composite beams can be analysed by the same
bending theory because the assumption that cross-sections that are planc before bending remain
planc after bending is valid in purc bending regardless of the material. The strain distribution
along the depth of such a beam is linear. However, such structures are statically indeterminate,
and rthe position of the neutral axis is not the centroid of the section. The critcrion of strain
compatibility has 10 bc used, ie. strain in the two materials, at a given vertical distance from
the N.A., has 10 be thc samc.

Il both the materials are rigidly joined together, they
will behave like a unit piece and the bending will take place
about the combined axis. On the other hand, if both the materials
have been simply placed one above the other, they will bend \\\R\\ J
about their respective geometrical axes. However, in both the ,/
cases, the total moment of resistance will be equal to the M
sum of moments of resistance of individual sections.

. (o ) BIMETALLIC
(#) Symmetrical Section oran ¢ (0)ammcy
Let us take the exariples of two timber picces streng-

thened by a steep strip sandwiched between them (Fig. 10.27
a). Such a bcam is commonly known as a flicched beam.

Let D be the depth of timber planks and d be the

depth of steel strip. Similarly, let B be the total width of * e
timber section and b be the width of stecl strip. Let us us¢  (e)rLiTeHed  (4) R.C.C.
suffix 1 for timber and 2 for steel. Since the sicel strip is BEAM BEAM

symmetrically placed, the common axis of bending will remain

e Shme 20 (et of e timber. FIG. 1026, COMPOSITE: SECTIONS

From Statics, M=M+ M, .(1)



Fig. 10.27 (b) shows the strain distribu- g, by bt do- bry—el fod
tion across the depth. Al any section distant a0
y from the N.A., the strain in both the materials T i -~
will remain the same (strain compatibility con- 0
dition), since they arc in contact. o IS S p——
Hence e =ey OF % = JE'_ / " ;
e

L=fi. 55 =mfi..(2) (e) SECTION (b)STRAUN (c)STRESS
1 DIAGRAM DISTRIBUTION

where ngfhkmulhcmadufar
1

ratio. Since E; is much more than E;, m is
much greater than 1. Hence the bending stress f; will be much greater than fi. The bending

sircss diagram is shown in Fig. 10.27(c) in which fi=gh=m.gh' =m/,

FIG. 1027, ANALYSIS OF A FLITCHED BEAM.

The above rclation can also be obtained by considering the fact that the radius of curvature
al any level will be the same for both the materials. Thus,

o %z.%
or ﬁﬂgr-.f.umﬁ

Thus, if f; is given, f; can be found, and vice-vers..
Il the geometry of the section is given, Z, and Z; can be calculated.

Hence Mi=fiZ, and M:=[: 2, wl(3)
Towal M = M, +H;-f|z: +f;z:
Thus, the total moment of resistance can be calculated.

If, however, it is required to find the seresses induced in the section corresponding to
a given bending moment, we have :
. E I - E.l,
Ry =R; or 7 bl 7o
M, _El
H; = F;T; -..(4}
From (1) and (4), M, and M; can bc found. Hence the stresses fy and f; can be found

by using Eq. (3).



(b) Unsymmetrical Section

Let us now take the example of unsymmetrical section, consisting of strip of width b
and depth d,, of matcrial 1 and strip of width b and depth d; of matcrial 2. The first step
will be to find the position of new aris of bending. This bc best done by drawing what is

known as the equivalent section (Fig 10.28 b).

Fig 10.28(a) shows the original section. Let us find the equivalent section of plawe 2

in terms of plate 1.

For the original section of plate 2, we have M:=/;Z;

If My" and Z," arc the moment of resis-
tance and section modulus of equivalent section
of plate 2, we have M," =/, Z,".

If M," has 10 be equal 1o M, we have
[:Z:=i 2

or 2y =?Zz =mJdc;
1

Hence b'=mb

(Since Z," and Z; arc proportional to b)

Sandwich Beams
A sandwich beam consists of

p—b — o b ——ey
T 7
% 1 W ,
%
L__' b _= :— pemb --—-—-—-_4-!
(o) ORIGINAL {b) EQUIVALENT
SECTION SECTION

FIG 1023 COMPOSITE SECTION

(/) wo thin layers of strong material, called faces, placed at top and bout

(i) thick core, consisting of light weight, low strength material. The core sin
as a [filler or spacer. Sandwich construction is used where light weight combined

strength and high stiffness arc needed.

Sandwich bcams can be analysed by two mecthod :

(1) Method 1

based on the assumption that the faces

axes, we have I;-ﬁb[d’—h’)
- Md_Md
Hm ﬁ-‘ﬁ'i-}_{f

where fr is the bending stress at the outermost edge of the

beam.

: Same as described for composite beam or flitched beam.

(i) Method 2 : An approximate theory for bending can be used,
carry all the longitudinal bending
stresses. Such an approximation is valid, specially when the core have
very low modulus of clasticity in comparison to that of the faces.

If Ir is the moment of inertia of the faces about the bending

STRONG
MATERIAL

«(10.18)

= - —
~pp——r— ~p-
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Shear stresses in the beam.

Shear stresses in the beam

In the last section, we have seen that when a part of a beam is subjected to a constant
bending moment and zero shear force, then there will be only bending stresses in the beam.
The shear stress will be zero as shear stress is equal to shear force divided by the area. As
shear force is zero, the shear stress will also be zero.

But in actual practice, a beam is subjected to a bending moment which varies from
section to section. Also the shear force acting on the beam is not zero. It also varies from
section to section. Due to these shear forces, the beam will be subjected to shear stresses.
These shear stresses will be acting across transverse sections of the beam. These transverse
shear stresses will produce a complimentary horizontal shear stresses, which will be acting on
longitudinal layers of the beam. Hence beam will also be subjected to shear stresses. In this
section, the distribution of the shear stress across the various sections (such as Rectangular
section, Circular section, I-section, T-sections etc.) will be determined.

SHEAR STRESS IN A SECTION

Resultant stresses (this side is more as
_ compared to the other side)
- —Z
——
A= 2rszsss- =] G
— T This is the small -
= - element over which
- iy, =
ﬁf = I E., = NG the siresses acts
)
M
M+5M 2 = widih of the
= E | \‘\ ¥~ section
saction 1 section 2

Resisting shear stress.

ASSUMPTIONS
1. Stress is uniform across the width (i.e. parallel to the neutral axis)
2. The presence of the shear stress does not affect the distribution of normal bending stresses.

It may be noted that the assumption no.2 cannot be rigidly true as the existence of shear stress will cause a
distortion of transverse planes, which will no longer remain plane.



It may be noted that the assumption no.2 cannot be rigidly true as the existence of shear stress will cause a
distortion of transverse planes, which will no longer remain plane,

In the above figure let us consider the two transverse sections which are at a distance Z &x" apart. The
sheanng forces and bending moments being F, F + &F and M, M + &M respectively. Now due to the shear
stress on transverse planes there will be a complementary shear stress on longitudinal planes parallel to the
neutral axis.

Let TCbe the value of the complementary shear stress (and hence the transverse shear stress) ata
distance Y" from the neutral axis. £ is the width of the x-section at this position

A is area of cross-section cut-off by a line parallel to the neutral axis.

Y = distance of the centroid of Area from the neutral axis.

Let o, o + do are the normal stresses on an element of area 5A at the two transverse sections, then there is
a difference of longitudinal forces equal to ( do . 8A) , and this quantity summed over the area A is in

equilibium with the transverse shear stress T on the longitudinal plane of area z §x .

e rzdx= fda.dA
from the bending theory equation
oM
¥y ool
. MI. ¥
o+da=—EM = IEM]'Y
Thus do = .5

(o+da)aA

(Pictorial representation
of entire part)



M.y

do=—2L
|
rz6x= [do.dA
=J'ﬁM.y.ﬁA
|
1:5:-2—“—.[}6#-
&M
t F=—
Bu =
F
e T= —]¥.
LzJ‘jr

But from defintion, Iy_dA= Ay

Iy.dﬁ. is the first moment of area of the shaded portion

and y = centroid of the area'A’
Hence

So substituting l.z

Where [z’ is the actual width of the section at the position where (121 " is being calculated and | is the total
moment of inertia about the neutral axis.



Lect-24

Shear stress devlope in different section, , solve related problem

SHEAR STRESS DISTRIBUTION IN SOME SECTIOM

The following are the important sections over which the shear stress distribution is to
be obtained :

1. Rectangular Section, 2. Circular Section,
3. I-Section, 4. T-Sections, and
5. Miscellaneous Sections.

LRECTANGULAR SECTION :

a rectangular section of a_beam of width  _ _
b and depth d. Let F is the shear force acting at the section. Consider a level EF at a distance
¥ from the neutral axis.

The shear stress at this level is given by equation (2.11) as

Ay
T F'bxf

where A = Area of the section above y (i.e., shaded area ABFE)

(g-3) <

=]
2]

e—— p —l ()]
{a)

"o e

¥ = Distance of the C.G. of area A from neutral axis
P | — - E:E[ E)
‘“2[2 ") i i St L

b = Actual width of the section at the level EF
I = M.0O.I of the whole section about N.A.



Substituting these values in the above equation, we get
F.(E—y] xbx-%[y +£]

2 2
= bxl
F IZEE a
= EI[ 3 Y ] .A2.12)

From equation (2.12), we see that t increases asy decreases. Also the variation of twith
respect to y is a parabola. Fig. 2.82 (b) shows the variation of shear stress across the section.

Mthetnpedge,y=%nndhenm
_Fld® (aV]_F
t_E_T_[EJ] F o=0

At the neutral axis, y =0 and hence

= Erd—i—ﬂ " xd2
T2r\4 ) 20 4
d® _ Fd bd®
ST [ f=—]
Bx— 12
12
12 F F
S b 1.5 bd (i)
Now average shear stress, 1 __= L IR i
= ' Taw = Area of section  bxd’
Substituting the above value in equation (i), we get
T=15x%7,, -.{2.13)

Equation (2.13) gives the shear stress at the neutral axis wherey = 0. This stress is also
the maximum shear stress.
Tax = 1.5 .-(2.14)

From equation (2.11), 1= % In this equation the value of A¥Y can also be calculated as

given below :
Ay = Moment of shaded area of Fig. 2.82 (a) about N.A.

Consider a strip of thickness dy at a distance y from N.A. Let dA is the area of this strip.
Then dA = Area of strip=5b x dy
Moment of the area dA about N.A.

=dA.y or yxdA

=y x bdy ( dA=bxdy)
The moment of the shaded area about N.A. is obtained by integrating the above equa-

tion between the limits y to %



- Moment of shaded area about N.A.
s Moment of shaded area about N.A.

12
=] yxbxdy

2
=.!:-‘|‘d yxdy (as b is constant)
.

(5] 4@ |55 ]

But moment of shaded area about N.A. is also equal to Ay

_ b|d?
e

Substituting the value of A Y in equation (2.11), we get

tT= = —
4

F"%[%"z] F[ii_f]

CIRCULAR SECTION :

a circular section of a beam, Let R is the radius
of the circular section of F is the shear force act- € . :
ing on the section. Consider a level EF at a dis-
tance y from the neutral axis,

The shear stress at this level is given by

equation (2.11)as (@ ®)

cw FxAXF
Ix<b |

a1

M o A

where AY = Moment of the shaded area about
the neutral axis (N.A.)

I = Moment of inertia of the whole circular section
b = Width of the beam at the level EF.

Consider a strip of thickness dy at a distance y from N.A. Let dA is the area of strip.

Then dA=hxdy=EF xdy (~ b=EF)
=2 x EB = dy (- EF=2xEB)
=2 x !Rz_-}rﬂ Hd_}"

(» Inright angled triangle OEB, side EB = ,|[R? - y2)
Moment of this area dA about N.A.
=y xdA I

=yx2 JR2-y? xdy (w dA=2,/R? - 42 dy)



=2y .lfjﬂz - y? dy.

Moment of the whole shaded area about the N.A. is obtained by integrating the above
equation between the limits y and R

AF = j:zr JRE 37 dy
- j" 2y JRZ - 52 dy.
¥

Now (= 2y) is the differential of (R? — ¥%). Hence, the integration of the above equation

becomes as
3/2 L
=2 (- RY¥ - B2 -y
== 2 0- R -y = 3 R2-yr e
Substituting the value of A¥ in equation (i), we get
Fx %{R“-f]“
= Ixb
But b=EF=2xEB=2x[R® - y*
Substituting this value of b in the above equation, we get
EF{RE — )
= Ix2R*- y*

Eguation (2.15) shows that shear stress distribution across a circular section is para-

bolic. Also it is clear from this equation that with the inerease of'y, the shear stress decreases,
Aty = R, the shear stress, Tt = 0. Hence, shear stress will be maximum when y = 0 i.e., at the

F
=5 (R?—y%) -2.15)

neutral axis.
Aty = 0i.e, at the neutral axis, the shear stress is maximum and is given by

®

_ - _p2
t"‘“-EIR
But I=— Dt=— x (2R} (+ D=2R)
= = = 1
n
_ER‘
.. = F xR’ _fxi
e — — 2
axER" 3 =R
But average shear stress,
Shear foree F

T = =
%% Area of circular section nR*
Hence equation (2.16) becomes as,
4

Tmax = E ¥ Tnug



|I-section

Consider g | section
Let B = Overall width of the section,
D = Overall depth of the section,
b = Thickness of the web, and
d = Depth of web.
The shear stress at a distance y from the N A, is given by equation (2.11) as
Ay

t=Fx :
I'=xh

s f
_____ *ltd ] Teman .

[=

In this case the shear stress distribution in the web and shear stress distribution in the
flange are to be calculated separately. Let us first calculate the shear stress distribution in the

ﬂ.ainaa.
(i) Shear stress distribution in the flange

[™

|

Consider a section at a distance y from N.A. in the
flange as shown in Fig. 2.87 (c).
Width of the section =B

Shadedamanfﬂange,fi:B(%_y)

Distance of the C.G. of the shaded area from neutral
axis is given as

[

[

—»{ b j—
D y
ki
D y 1
=T*E=§[E*3’] Fig. 2.88 (c)
Hence shear stress in the flange becomes,
Fx Ay :
1= T (++ Here width = B)
D 1/ D
-FXB(E-JP]KE(E-F?]
IxB
F

3]



FiD* .
= E[?_” J .(2.18)

Hence, the variation of shear stress (1) with respect to y in the flange is parabolic. It is
also clear from equation (2.18) that with the increase of v, shear stress decreases,

(a) For the upper edge of the flange,

Hence T =

= — (D*-d?) (2.19)

(1i) Shear stress distribution in the web
Consider a section at a distance y in the web from the T W
N.A. as shown in Fig. 2.89. /
Width of the section = b.
T

D2 g
Here Ay is made up of two parts i.e., moment of the y
flange area about N.A. plus moment of the shaded area of the _l 1

N T A

1N

web about the N.A.

;. AY = Moment of the flange area about N.A.

+ moment of the shaded area of —
web about N A,

32D se) ) |

_E 2 E£_2
_B{Dﬁ—d}+2{4 b

Hence the shear stress in the web becomes as

— 2

Ixh Ixb B
From equation (2.20), it is clear that variation of t with respect to y is parabolic. Also
with the increase of ¥, T decreases.
At the neutral axis, ¥ = 0 and hence shear stress is maximum,

__F[B 2 2 b d
sz{aw ‘”"2“4]

__F |BD*-d*)  bd’
Ixb| 8 8

At the junction of top of the web and bottom of flange,

_d
Y=



Hence shear stress is given by,

__F |Bpa_ 42 b f,_[i]z
71 it ‘”"2[4 2
2 2
gl g ) .(2.22)

BIxb
The shear stress distribution for the web and flange is shown in Fig. 2.88 (b). The shear
stress at the junction of the flange and the web changes abruptly. The equation (2.19) gives the
stress at the junction of the flange and the web when stress distribution is considered in the
flange. But equation (2.22) gives the stress at the junction when stress distribution is consid-
ered in the web. From these two equations it is clear that the stress at the junction changes

F B _F
abruptly from 8] (D% —d?) to 5 * Bl (D? — d?).
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Differential equation of the elastic line

Intreduction:

In all practical engineering applications, when we use the different components, normally we have to operate
them within the certain limits i.e. the constraints are placed on the performance and behavior of the
components. For instance we say that the particular component is supposed to operate within this value of
stress and the deflection of the component should not exceed beyond a particular value.

In some problems the maximum stress however, may not be a strict or severe condition but there may be
the deflection which is the more rigid condition under operation. It is obvious therefore to study the methods

by which we can predict the deflection of members under lateral loads or transverse loads, since it is this
form of loading which will generally produce the greatest deflection of beams.

Assumption: The following assumptions are undertaken in order to derive a differential equation of elastic
curve for the loaded beam

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for beams that are
not stressed beyond the elastic limit.

2. The curvature is always small.
3. Any deflection resulting from the shear deformation of the matenal or shear stresses is neglected.
It can be shown that the deflections due to shear deformations are usually small and hence can be ignored.

| %

e
--Iu:lf-l‘* i:|

Consider a beam AB which is initially straight and horizontal when unloaded. If under the action of loads the

beam deflect to a position A'B' under load or infact we say that the axis of the beam bends to a shape A'B". It
is customary to call A'B' the curved axis of the beam as the elastic line or deflection curve.




In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending moment M vanes
along the length of the beam and we represent the vanation of bending moment in B.M diagram. Futher, it is
assumed that the simple bending theory equation holds good.

o=M=E
¥y T R

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every point is
different; hence the slope is different at different points.

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x and y, x-axis
coincide with the original straight axis of the beam and the y [ axis shows the deflection.

Futher let us consider an element ds of the deflected beam. At the ends of this element let us construct the
normal which intersect at point O denoting the angle between these two normal be di

But for the deflected shape of the beam the slope i at any point C is defined,

tani= 5 A (1) or i= dy Assuming tani =i
dx dx

Futher

ds=Rdi
however,

ds = dx Jusually for smallcurvature)
Hence

ds = dx =Rdi
di _1
or = = B
substitutingthevalueofi, one get

d { dy =1md=y=1
dxldx) R df R
Fromthe simplebendingtheory

M_E El
T R"™R
sothe basic differentialequation governingthe deflectionofbeamsis
d’y
M=El
9

This is the differential equation of the elastic line for a beam subjected to bending in the plane of symmetry.
Its salution y = f{x) defines the shape of the elastic line or the deflection curve as it is frequently called.



Relationship between shear force, bending moment and deflection: The relationship among shear
force bending moment and deflection of the beam may be obtained as

Differentiating the equation as derived

Mgy Y Recaling M=F
dx  de dx
Thus,

d’y
F=E|
A

Therefaore, the above expression represents the shear force whereas rate of intensity of loading can also be
found out by differentiating the expression for shear force

iew= - dF
' dx
||:|"3|r
w= -El
ax

Therefore if'y'isthe deflection of the loadedbeam,
thenthe followingimportantrelationscanbearrivedat

dy

| 1

siope E?
d!

BM= EI—T

Shearforce = Elﬂ.
dx

e d"r
loaddistribution =El e
X
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Slope and deflection of beams by integration method, solve related problem

Methods for finding the deflection: The deflection of the loaded beam can be obtained varous
methods The one of the method for finding the deflection of the beam is the direct integration method, i
the methaod using the differential equation which we have dernived.

Direct integration methed: The goveming differential equation is defined as

m=efy o M- &y

o B of
onintegrating one get,

;1: Ig—dl +A---- thisequation gives the slope
X

of theloadedbeam.
Integrate once again to get the deflection.

3{=”Ehj!dx +Ax+B |

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is subjected to a
concentrated load W at the free end, it is required to determine the deflection of the beam

A

L

In order to solve this problem, consider any X-section X-X located at a distance x from the left end or the
reference, and write down the expressions for the shear force abd the bending moment

SF|,_, =-W
BM|,_, = -W.x
Therefore M|, _, = -W.x

M dy

the goveming equation = =
9 geq Bl dx?

sub stituting the value of M interms of x then integrating the equation one get
. 2



_ dy

]
the goveming equation —

T
substituting the value of M interms of x then integrating the equation one get
M _ d?y
El  df
dy . Wx
of 8
Idljr J Wx WX 4
od ° E
i
_:f= -_ +A
dx  2El
Integrating oncemore,
dy _ 1w
—dx+) Adx
[ I 26l '[
W

y=-ﬁ+ﬁm+5

The constants A and B are required to be found out by utilizing the boundary conditions as defined below

ieatx=L;y=0 s (1)
alx=L dyfdx =0 cercecremee—— (2]
Utilizing the second condition, the value of constant A is obtained as

wE
A=
ZEr
While employing the first condition yields
wi
=-—— +AL+B
Y= EE
M3
T BE
_we _owe
BEl  2EI
_we-3we _ owl®
BEI EEI
wi?
=-
Substituting the values of A and B we get
1 [owed wiix wi
El| BEI 281 3E




The slupais waﬁ asthe deflection \h‘_ﬂutd be

maximum &t the free end hence putting =0 we get,
TE
¥rnax = = SET
_. w2

fm
L

if ads - In this case the cantilever beam is subjected to U.d|
with rate -:-l mlensrqr vamng w [ length, The same prm:edure can also be adopted in this case

X

{

=
"n
o
1

EI IS
*
"
e

|(E'°'“1ma'" ~tZE




Case 2: A Cantilever with Uniformiy distibuted Loads:- In this case the cantilever beam is subjected to U.d.|
with rate of intensity varying w / length. The same procedure can also be adopted in this case

X

f

- o
=0 |y % J Q!=L
Ix N
: g
SF|,_, =-w
3
X X
EML_,*“‘#IE: [?]
M _ dy
El o
&EHE_WHE
a? 2B
diy wx?
=]-—_d
IE‘*’ J 1=
dy W
—_—- +A
¥ BEI
Igz E.E.l.lﬂ:lt+,|.4!n.-:h:
4
WK
=-___ +Ax+B
Y am

Boundary conditions relevant to the problem are as follows:
1. Atx=L,y=0

2. At==L;dy/dx=0

The second boundary conditions yields

‘#Ia

A=+ —
BEI
whereasthe first boundary conditions yields
" wi? . wlt
24El BEI



1] ow® | wlix_wld

Thus. Y=g "2 * 5 "3
S0 Ymaxm willbeat x =0
__wl EARGL
fmu'“_'ﬁ I 4% 2™ GEI

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply supported beam is
subjected to a uniformiy distributed load whose rate of intensity varies as w / length.

1*& va
b 2

In order to write down the expression for bending moment consider any cross-section at distance of x metn
from left end support.

The diferential equation which gives the elastic curve for the deflected beam is
d*y _ M _ 1 [wl.x wxi:|

o B EBIl 2 2.
dy _ [wix , _ [wx
e ﬁdx ﬁdxhﬂx
2 3
=WIX WX LA



Integrating,once more one gets

wlx w

“TZE1 ZEEI

Boundary conditions which are relevant in this case are that the deflection at each support must be zero.

+A x+B -=== (1)

ieatx=0y=0:atx=ly=0

let us apply these two boundary conditions on equation (1) because the boundary conditions are on y, This
yields B = 0.

i - w_f‘ + A

12El 24E|

wh

24El

So the equation which gives the deflection cuve is

:1 wLxs_w:"_wLB:
L =1 I VT T

In this case the maximum deflection will occur at the centre of the beam where x = L2 [ Le. at the position
where the load & being applied |50 if we substitute the value of x = L/2

Then y m= EI[T;_[E] 2“( ] WE[ ]l

__ 5wt
Y™ ~ " SBAE

Futher

Conclusions
(i) The value of the slope at the position where the deflection is maximum would be zero.
(i) Thevalue of maximum deflection would be at the centre i.e_at x = L/2.

The final equation which is governs the deflection of the loaded beam in this case is

1 fwhd _w®_ wlix
i El (e T

By successive differentiation one can find the relations for slope, bending moment, shear force and rate of
loading.



Deflection (y)
1= [ il -SWL*
7 A A _~" 384E

3

Slope (dy/dx) /—‘ el
24
b |
g 0y 2 3wl _dwd _wl '24
X 12 24 24
3" degree Polynomial

Case 4: The direct integration method may become more involved if the expression for entire beam is not
valid for the entire beam.Let us consider a deflection of a simply supported beam which is subjected to a
concentrated load W acting at a distance “a’ from the left end.

Let R: & Rz be the reactions then,

w
A lB C
|
Ri Rz
B.M for the portion AB
Hﬂ =Ryx0ixsa
B.M for the portion BC

M. =Ry x-W(x-a)a < xsl
so the differential equation for the two caseswould be,



¥
EF%}=F£,:

2
Etgﬁ':m x- W (x-a)

These two equations can be integrated in the usual way to find [y" but this will result in four constants of
integration two for each equation. To evaluate the four constants of integration, four independent boundary
conditions will be needed since the deflection of each support must be zero, hence the boundary conditions
{a) and (b) can be realized.

Further, since the deflection curve is smoaoth, the deflection equations for the same slope and deflection at
the point of application of load i.e. at x = a. Therefore four conditions required to evaluate these constants
may be defined as follows:

{ajatx=0,y=0inthe potion ABie. 0=x<a
(bjatx=l,y=0inthe portionBCie asx=s|
{c) at x = a; dy/dx, the slope is same for both portion

{d) at x = a; y, the deflection is same for both portion

By symmetry, the reaction R, is obtained as

_ Wb
' a+b
Hence,
dy_ Wb .  maae
EIET mx D<x<a (N
'y _ Wb
= - B TP
Eld_xf i~ W(x - a) agxgl (2)
integrating (1) and (2) we get,
dy . Wb 2 I S T
Eldx mjx +k, O<x<a (3)
dy _ Wb o W(x-a) G e emnenns
ElE 2(&+h)“ 3 +k; adxtl {4

Using condition (c) in equation (2) and (4) shows that these constants should be equal, hence letting

Ki=Ks=K
Hence

dy Wb 2 N DT
B = sy " 0<x<a-----~(3)



dy _ Wb, W(x-a)
| = - _
TPk 7tk

Integrating agian equation (3) and (4) we get

_ Wb
Y = 5
Wb 3 W(x- a)’

Ely =
Tyl 5

Utilizing condition (a) in equation (5) yields
ky =0
Utilizing condition (b) in equation (B) yields
0= Wo o W(-a)

b(a+b) b
Wo 5 W(-3)"

B(a+b) 5

But a+b=lI,

o +kt+ky D¢x€anmnnn- (5)

+kx +ky alnLlennnn- (B)

+kl +k,

kl

k4='

'Thusi

Wh(a +b)’ 3
ks =~ [f;) +T - k(a +b)

Now lastly ka is found out using condition (d) in equation (5) and equation (6), the condition (d) is that,

At x = a; vy, the deflection is the same for both portion

Therefore ymemﬁ = H’meiunn
or
3
Wb 4 _ Wb 5 Wix-a)
5w B
Wb _ Wb 3_W[a—aj3
e M CE -
Thus, ky=0;
OR

1 3
kq :_%(;+h] +"H;h -k{a+b)=0o

+kx +|'¢.4

thka +ky




Wh(a +b)"  wb?
B B

Wha +h}+ Wh
& B(a+h)

kia+b)=-

k=-

so the deflection equations for each portion of the beam are
Wh
|y =
Ely Gla+th)
_ Wh _ Wh(a+b)x | Whx
By = 573 +5) 5 B5(a+h)
and for other porion
Wh W(x-a)’
ly= -

Y= e+ © =%
substituting the value of 'k'in the above egquation
_wh? W(x-a) Wb(a +b)x | Whx

G{a+h) b 5 B(a +b)
so either of the equation {(7) or (BYmay be usedto find the deflectionat x=a
hence substituting x = a in either of the equation we get

w0 +kx + ky

----forD€x€a----- )]

+kx +ky

Ely Forforag<x<l----- )

_ Wa'b?
3 3El(a +b)
ORifa=hb=I2
wie
Y =T
mmax™ El
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Slope and deflection area moment method, , solve related problem

Slope and deflection area moment method

The area moment method is a semi graphical method of dealing with problems of deflection of beams
subjected to bending. The method is based on a geometnical interpretation of definite integrals. This is
applied to cases where the equation for bending moment to be written is cumbersome and the loading is
relatively simple.

Let us recall the figure, which we referred while deriving the differential equation governing the beams.

g Y-
Elastic clrve

I'-a' »

It may be noted that d$ is an angle subtended by an arc element ds and M is the bending moment to which

this element is subjected
We can assume,
ds = dx [since the curvature is small]

hence, Rdé=ds

8 _1_M
ds R EI
dd _ M
ds El
But for small curvaturefbut B is the angle slope is tanB =? for small
X
dy d’y _ M .
angles tanB = Bhence & 2 —so we get = —by putting ds = dx
g h > QPl——§ 7 0¥ publing ]
Hence,
dé _ M _ Madx
H_Em dﬂ——El U]




The relationship as described in equation (1) can be given a very simple graphical interpretation with
reference to the elastic plane of the beam and its bending moment diagram

s A *
[ mq_ Langents drasw 3t the
rF-T F wrvd of sral sloment da.
Defincton cures of -
the besrn Arc = Anghe x radias
e cmn Lakos e rocioes
e e S o he ecal o
...r"'". =B Thiss isssi=o wathin
Al - P Brn il At F sy
— e
Bendng Moment dagram :"j -H_“-__fff_-
of tha Paar oukjeotost to —se] W /f .G
SThitTary tyrwe of baeriig -f;::
il
A -—x —= B
ce

Refer to the figure shown above consider AB to be any portion of the elastic line of the loaded beam and
AiB1is its corresponding bending moment diagram.

Let AQ = Tangent drawn at A
BO = Tangent drawn at B
Tangents at A and B intersects at the paint O.

Futher, AA " is the deflection of A away from the tangent at B while the vertical distance B'B is the deflection
of point B away from the tangent at A. All these quantities are futher understood to be very small.

Let ds = dx be any element of the elastic line at a distance x from B and an angle between at its
tangents be d&. Then, as derived earlier

This relationship may be interpreted as that this angle s nothing but the area M_dx of the shaded bending
moment diagram dnaded by EI

From the above relationship the total angle & between the tangents A and B may be determined as

ﬂ:?m_dx:
A

m| —

B
| [de
A

Since this integral represents the total area of the bending moment diagram, hence we may conclude this
result in the following theorem



Theorem |:

slope or @ : %z area of B.M diagram between
between any two points

corresponding portion of B.M diagram

Mow let us consider the deflection of point B relative to tangent at A, this is nothing but the vertical
distance BE". It may be note from the bending diagram that bending of the element ds contributes to this

deflection by an amount equal to x déZ[each of this intercept may be considered as the arc of a circle of
radius x subtended by the angle &]

B
FJ' xdf
Hence the total distance B'B becomes A

The limits from A to B have been taken because A and B are the two points on the elastic curve, under
consideration]. Let us substitute the value of d5 = M dx / El as derived earier

o= M
A

hdx

—_—

Ity @@

[ This is infact the moment of area of the bending moment diagram)]

Since M dx is the area of the shaded strip of the bending moment diagram and x is its distance
from B, we therefore conclude that right hand side of the above equation represents first moment area with
respect to B of the total bending moment area between A and B divided by EI.

Theorem II:

_1 x{ﬂrs:l moment of area wih respect }
|

Deflection of point OB" relative o point A E topontB, of the total B.M diagram

Futher, the first moment of area, according to the definition of centroid may be written as A , where X s
equal to distance of centroid and a is the total area of bending moment |

5, = ‘IAR

Thus,

Therefore the first moment of area may be abtained simply as a product of the total area of the B.M diagram
betweenthe points A and B multiplied by the distance * to its centroid C.

If there exists an inflection point or point of contreflexure for the elastic line of the loaded beam between the
points A and B, as shown below,

e
A — 1B




Then, adequate precaution must be exercised in using the above theorem. In such a case B. M diagram
gets divide into two portions +ve and [ ve portions with centroids Ciand Cz. Then to find an angle & between
the tangentsat the points A and B

And similarly for the deflection of Baway fromthe tangent at Abecomes
1] D
hldx Mdx
fs[—x—[—.x
{ El ‘,! El
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Eccentric loading of a short strut

Introduction:

Structural members which carry compressive loads may be divided into two broad categories depending on
their relative lengths and cross-sectional dimensions.

Columns:

Short, thick members are generally termed columns and these usually fail by crushing when the yield stres
of the matenal in compression is exceeded.

Struts:

Long, slender columns are generally termed as struts, they fail by buckling some time before the yield stre
in compression is reached. The buckling oceurs owing to one the following reasons.

(a). the strut may not be perfectly straight initially.
(b). the load may not be applied exactly along the axis of the Strut,

(c). one part of the material may yield in compression more readily than others owing to some lack of
uniformity in the material properties through out the strut.

In all the problems considered so far we have assumed that the deformation to be both progressive with
increasing load and simple in form i.e. we assumed that a member in simple tension or compression
becomes progressively longer or shorter but remains straight. Under some circumstances however, our
assumptions of progressive and simple deformation may no longer hold good and the member become
unstable. The term strut and column are widely used, often interchangeably in the context of buckling of
slender members.]

At values of load below the buckling load a strut will be in stable equilibrium where the displacement caused
by any lateral disturbance will be totally recovered when the disturbance is removed. At the buckling load the

strut is said to be in a state of neutral equilibrium, and theoretically it should than be possible to gently
deflect the strut into a simple sine wave provided that the amplitude of wave is kept small.

Theoretically, it is possible for struts to achieve a condition of unstable equilibnum with loads exceeding the
buckling load, any slight lateral disturbance then causing failure by buckling, this condition is never achieved
in practice under static load conditions. Buckling occurs immediately at the paint where the buckling load is
reached, owing to the reasons stated earlier.

The resistance of any member to bending is determined by its flexural rigidity El and is The quantity | may
be written as | = A",

Where | = area of moment of inertia
A = area of the cross-section

k = radius of gyration.



Eccentric loading of a short strut

Let [le' be the eccentricity of the applied end load, and measuring y from the line of action of the
load.

Then
nr{D2+n:jy=ﬂﬁheren:= PIEl
Therefore Yo = Yeompmmentary

= Asin nx + Beos nx
applying the boundary conditions then we can determine the constants i.e,
atx=0,y=ethusB=e

atx=1/2,dy/dx=0

Therefare
Acos n_lh Esinn—i=ﬂ
2 2
Acos n_l= B sin n_l
2 2
|
A = Btan &
an 2
nl
A = o
e tan 3

Hence the complete solution becomes
y = A sin(nx) + B cos{nx)

substituting the values of A and B we get

nl .
y=e tanasmnx +CosnX



Mote that with an eccentric load, the strut deflects for all values of P, and not only for the critical
value as was the case with an axially applied load. The deflection becomes infinite for tan (nl)/2 = *= e, nl
7El
P, 5=
=z giving the same crippling load I*_ However, due to additional bending moment set up by
deflection, the strut will always fail by compressive stress before Euler load is reached.

Since
.
¥y=e [tan%sm nx + cnsnx] _.! llI F. "'—n"F
u | L I
‘j’m.L“ [tan["l] sun—d-n:n:rs_i l |
g o=
sin +cos’ = =
5 =z 2 -
nl
cas— |
I ‘ e sac— 1,; ln
1:-::5—
+ MR 8
Hence maximum bending moment would be [} 5
Mrnaal" = pym::.“ I
nl
= Pe sec— |
_2 I
Mow the maximum stress is obtained by combined and direct strain
¢ = ; -% stressduetobending % = IE; ’
M=o|—;om=¥MEII=Hyjssec1iunmudurus i |

The second term is obviously due the bending action.

Consider a short strut subjected to an eccentrically applied compressive force P at its upper end. If
such a strut is comparatively short and stiff, the deflection due to bending action of the eccentric load will be
neglible compared with eccentricity O e’ and the principal of super-imposition applies,

If the strut is assumed to have a plane of symmetry (the xy - plane) and the load P les in this plane
al the distance e’ fram the centroidal axis ox.

Then such a loading may be replaced by its statically equivalent of a centrally applied compressive force P
and a couple of moment P.e

P
Jy 5 =
1. The centrally applied load P produces a uniform compressive & stress over each cross-section as
shown by the stress diagram.
Pl
oy S5

2. The end moment UM produces a linearlty varying bending stress as shown in the figure.

Then by super-imposticon, the otal compressive stress in any fibre due to combined bending and
COMpression becomes,



3l- =R
+ + +
plgolg (21
1] n L
(N i
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Eccentric loading on a long column

Eccentric loading on a long column

Rakinkine formulal

Consider a long column which is subjected to eccentric load. Let

P = Load on the column

A = Area of cross-section

¢ = Eccentricity

k = Least radius of gyration
¥, = Distance of extreme fibre on compression side from axis of the column

The maximum intensity of compressive stress for eccentric load on column is:

@, = Direct stress + Bending stress
P M P Pe
= —Ff—=——
A Z A Z

2
=£+E [‘,.",Z:"d“ir ]

A Ak? Ye
E[H&]
A I

O A

P=—E’}*
(1)

Let o be the safe stress for the column material. Therefore, the safe load on the column with
an eccentricity € is given by

or

P= —""F";
=
Equation (6.39) gives
p=—IA
LYV

If buckling is to be included. the safe eccentric load P becomes

o.A

[I+ E'F;' J[]"} a L;]
k- k*

P=




EULER'S FORMULA

A column AB fixed at the end A and free at B is shown to deflect a distance o under the action

of eccentric load P (Figure 6.8). The length of the beam is L. Due to this loading, beam AB

takes the curved shape AB,. The free end B occupies a new position as shown in Figure 6.8.
Consider a section at a distance x from A. Let

P = Critical load on the column
d = Deflection of B

¢ = Eccentricity of the load

v = Deflection of the column at x

Moment at x due the load P=M=Pld+e-y)=Pld+e) - Py

d*y
or El a'.ri =P(d+e)- Py

d*y Py P(d+e)
or —_— =

det  EI El

The general solution of the above differential equation is:

y=0C ma(gx] +C, 5in(J§x]+ (d+e) (6.46)

Here (', and (', are constants of integration. It is seen that at x = 0, y = 0, hence from Eq. (6.46),
wie get

C,==(d+¢)
Differentiating Eq. (6.46), we have

2y = sin[ P .x]H’I ims[ ix] 6.4
i e "WeE e O L)
Agmn boundary conditions at x = 0, i1s given as:

x=0,2 =0
dx



Substituting these boundary conditions in Eq. (6.47), we obtain

P
0=C,, 'E (6.48)

In Eq. (6.48), C; must be 0 as the load P is not 0.

Now, substituting C, = —(d + ¢) and C, = 0 in Eq. (6.46), we get

P
?——[d+€]m[JE—Tx]+[d+z]

Another boundary condition is at x = L, y = d.Therefore,

||P
d= —(d L,|— d
f +e}(m@ Ef]+[ + &)
or {d+e}msL,f£ =g
Er

P
or (d+e)=esecl,.|—
ET
Now, the maximum bending moment occurs at B and is given by
M, = P(d+e)

Substituting the value of (d + €) from Eq. (6.49), we get

P
M., =P —
T esecLJ;

The maximum compressive stress occurs at A such that,

O, = Direct stress + Bending stress

Similarly, it can be shown that the equation of maximum bending moment for hinged and fixed
ends of column are as follows:

1. When both ends of column are hinged, M, :Pes«ac%J%

2. When both ends of column are fixed, M, = PesecE L

4 ¥ EI
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Euler’s column formula

ASSUMPTIONS MADE IN THE EULER’'S COLUMN THEORY

The following assumptions are made in the Euler’s column theory:

The column is initially perfectly straight and the load is applied axially.

The cross-section of the column is uniform throughout its length.

The column material is perfectly elastic. homogeneous and isotropic and obeys Hooke's law.
The length of the column is very large as compared to its lateral dimensions.

The direct stress is very small as compared to the bending stress.

The column fails by buckling alone.

The self-weight of the column is neglected.

EXPRESSIONS FOR CRIPPLING LOAD OF DIFFERENT CASES
Both the Ends are Hinged or Pinned

Figure 10.1 shows a column of length ! of uniform cross-section hinged at both the ends. Let P be
the crippling load at which the column has just buckled. Consider section XX at a distance x from
bottom support. Let y be the deflection at the section.

Bending moment M at the section is given by

SOk =

¥
d*y

M= EI= = -Py

dx
or 32 4 py=0
dx* ’

d*v Py
T+ =g

or —_—
dx= El

The solution of above differential equation is:

vy = C; cos .rJi + 5 sin .11H£ (10.1)
’ El £l

where €, and C; are the constants of integration.
Atx=0y=0,

From Eq. (10.1) Ci=0
AMx=1Ly=0,

. . ||P
From Eq. (10.1) 0= sin | 1 /—
] ,l.l 3 L1 [ ,Ej']

or C

J =0 Fig. 10.1 Column with both

or .\'in[f
eénds hinged.



LR

As C) =0, and if C; =0, then from Eg. (10.1) we will get v = 0.
This means the bending will be zero, i.e., column will not bend, which
is not true.

C#0

Now, sin[!,l’%] = 0 = sin 0, sin & sin 2, sin 3m, ...

_P
L= (=0, x 2r 3n...

Consider the least practical value:

One End is Fixed and Other is Free

Consider a column of length [ where lower end is fixed and upper
being free. Let due to crippling load P the column just buckle,
Let deflection at the top end is “a’. Consider a section XX at a
distance x from the lower end.

The bending moment at the section XX is: d
5
B < pa-y)
dx”

where y is the deflection at distance x.

-

Mow, El d; + Py= Pa
dx
d’y Py Pa
or —— = T —
ax* EI El

The solution of above differential equation is:

o ’P o '[T-
}-L,cnz[:t E-"]l'-{-: sm[x Ef]+ﬂ (10.3)

Al x=0 y=0,
0=C +a

or Cy=-a

AL x=0 ﬂ={J‘.

" dx



The slope of the section is:
L. = -Cu‘isin 't‘l'i + s imﬁ .11’1
dx El El "X EI El
0=0+ C».di
“\ El
P

It is clear that either
C,=10 or lLj— =10
- El

|| P
But for the crippling load P the value of [ E # 0,
Ci=10
Substituting the values of C; and C; in Eq. (10.3), we get
) y = -a cos| x s +a
B ' VEr
At =] y=gq,
P ]

S a==a cns[i' + a

or cns[.l' i]:1]
\IEI
P T ir Sm
or ] = = —, —
'JEI 2 2 2

Consider the least practical value:

'J Er 2
o

2
or P= E

44°

Both Ends are Fixed

Consider the column AB of length [ fixed at both the ends. Let P be
the crippling load and M be the fixed end moment at A and B.
Bending moment at section XX = M - Py

2
Edy Ly py
dx
y
or El — + Py=M
dax-
d°y P M

or B
dx- El El



The solution of above differential equation is:

v = cos I‘I‘_}f + 5 sin .r.l’if + i
Ef El P

Slope at the section will be

dy . || P || P . ' P P
— ==L |— sinfx |— |+ Co/— cos | x| —
dx Ef Ef Ef !

At B, x=0y=10
M
0=0C + —
1+ p
. M
Ci==-—=
or | P
Al B, :::L’lﬂ:'lf]':v(_':i
dx I
E':='E|'
F
At A, r.-.f.v=ﬂ=-%cua[.f T +%

el

or i if = (), 2r, 4m 6F
Consider the least practical value:
! £ =2n
I
A’ El
P = Hr :

One End is Fixed, Other is Hinged

Consider a column AB of length [ fixed at lower end and pinned
at upper end. Let P be the crippling load. M is the fixed end
moment at support. In order to balance the fixed moment M there
will be the horizontal reaction at A.
Bending moment at the section XX is:

2
d—f ==Py+ Hil=-x)
™

El

%y
or E.f% + Py = Hil - x)
P



1=y
or EI=2 + Py = H(l - x)
=

e Ly=2a-»
a BT H

The solution of the differential equation is:

y=0 cus[.&‘J%] + G, sin[.rJ%] + %H - x)  (10.6)

The slope at the section is:

dy o I . P P H
— = —E..I'— sin .r.l‘— + COs 'T1f_ - —
dx El El El P

Atx=0,y=1

or

or Ci=-—I

J\I.l‘=ﬂ.£ =0=0C, ’i_ﬁ
dy NEf P
H (B

or Cm —
PY P
Alx=lLy=0,

or 0=- E." cos .‘Ji + i sin "‘I'i
P El PY P El ,

Lan .FJi - n',|||i

El El

Simplifying, we get

The solution to this equation is:

!di = 4.5 radians
El
or L2 (4.5)° = 20.25
El
c= P ZID.:.:S El
Approximately, 20.25 = 2n°
2
or p= in El

Y

li-

X LY J A
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Lateral buckling, Critical Load,Slenderness ratio

CRITICAL LOADING

The minimum limiting load at which the column tends to have lateral displacement or
tends to buckle is called buckling load or critical load or crippling load.

Lateral buckling: The buckling of column by lateral displacement is known as Lateral buckling

SLENDERNESS RATIO

The ratio of the actual length of a column to the least radius of gyration of the column is known as
slenderness ratio. Mathematically, slenderness ratio is given by

Actual length

Slenderness ratio = - -
Least radius of gyration

= — (10.9)

The strength of column depends upon the slenderness ratio and end condition. If the slenderness
ratio is increased, the compressive sirength of a column decreases as the tendency of buckle is
increased.

CLASSIFICATION COLUMN ACCORDING TO SLEMDERNESS RATIO

Column can be divided into three types based on their slenderness ratio:

Shert column:  Column for which slenderness ratio is less than 32 is called short column. When

short column of uniform cross-sectional area subjected to axial compressive load, the stress induced
in the column corresponding to crushing or direct compressive stress. Short column are designed
based on crushing stress, as buckling stresses are very small as compared to crushing siress.

i::.ll

Medium column: Column for which slenderness ratio is in-between 32 to 120 is called medium
column. Medium columns are designed based on crushing as well as buckling stress.

32 —=120

{
k
Lang colummn: Column for which slenderness ratio is more than 120 is called long column. Long
column are designed based on buckling stress, as crushing or direct compressive stresses are very
small as compared o buckling stress,

i > 120
k



CRIPPLING STRESS IN TERMS OF EFFECTIVE LENGTH AND
RADIUS OF GYRATION

The moment of inertia [ can be expressed in terms of radius of gyration k as:
1= AR

where A is area of cross-section.

Column will tend to bend in direction of least moment of inertia. So column should be designed
using the least value of moment of inertia, then & is the least radius of gyration of the column section.
MNow, crippling load P in terms of effective length is given by

Tl El

p=2=

L:
7' Ex Ak*

n

Crippling stress = SSEREDgloRd _ B
Area A

T ExA
= — (Substituting the value of P)

-

)




Lect-32

Torsion in solid and hollow circular shafts, Twisting moment

SHAFT

The shafis are usially cylindrical in section. solid or hollow. They are made of mild steel,
alloy steel and copper alloys.

Shafis may be subjected to the following loads:
1. Torsional load
2. Bending load
3. Axial load
4. Combination of above three loads.
The shalts are designed on the basis of strength and rigidity.
The following values are usually adopted for the design ol shaft:
o= 112 MN/m?, the maximum permissible tensile or compressive stress.
T =56 MN/m?, the maximum permissible shear stress.

The ultimate tensile stress for commercial steel shafting may be 315 MN/m?® for hot rolled
and tumed low carbon steel and 490 MN/m? for cold finished low carbon steel, corresponding
stresses at the elastic limit would be about 160 MN/m?® and 315 MN/m? respectively. In shafis with
key ways the allowable stresses are 75% of the values given.

TORSION IN A SHAFT

A shafl is said to be in torsion, when equal and opposite torques are applied at the two
ends of the shafl. The torque is equal to the product of the force applied (tangentially to the
ends of a shaft) and radius of the shaft. Due to the application of the torques at the two ends,

the shaft is subjected to a twisting moment. This causes the shear stresses and shear strains in
the material of the shaft.

TORSION EQUATIOM

The torsion equation is based on the following assumptions:
1. The material of the shaft is uniform throughout.

The shalt circular in section remains circular after loading.

e b

A plane section of shalt normal to its axis before loading remains plane afier the torques
have been apphied.
The twist along the length of shaft is uniform throughout.

5. The distance between any two normal cross-sections remains the same after the application
of torque.

6. Maximum shear stress induced in the shaft due to application of torque does not exceed
its elastic limit value.



TORSION IN SOLID SHAFT

When a circular shaft is subjected to torsion, shear stresses are set up in the material of
the shaft. To determine the magnitude of shear stress at any point on the shaft, consider a
shaft fixed at one end AA and free at the end BB as shown in Fig. 2.96. Let CD is any line on
the outer surface of the shaft. Now let the shaft is subjected to a torque T at the end BB as
shown in Fig. 2.97. As a result of this torque T, the shaft at the end BB will rotate clockwise
and every cross-section of the shaft will be subjected to shear stresses.

AR B
p

z

-

y D
i

4C

i

#1

#1

#1

#

1A B

L —
The point D will shift to I and hence line CD will be deflected to CD’ as shown in
Fig. 2.97 (a). The line OD will be shifted to OD’ as shown in Fig. 2.97 (b).

Let R = Radius of shaft
L = Length of shaft
T = Torque applied at the end BB
[, = Shear stress induced at the surface of the shaft due to torque T

C = Modulus of rigidity of the material of the shaft
¢ = ZDCLY also equal to shear strain
0 = ZDOD’ and is also called angle of twist.

| T
BN,

(a) ib)

Now distortion at the outer surface due to torque T
= DD’
Shear strain at outer surface
= Distortion per unit length
Distortion at the outer surface DD’
Length of shaft L

LMALLLALLALLRRRNRNY
0
O

=

F‘




=¢ (if ¢ is very small then tan ¢ = ¢)

Shear strain at outer surface,
Doy

= — lE)

L
Now from Fig. 2.97 (b).
Arc DD'=0D x6=R6 (> OD =R = Radius of shaft)
Substituting the value of DD in equation (i), we get
Shear strain at outer surface

Rx@

L
Now the modulus of rigidity (C) of the material of the shaft is given as

Shear stress induced _ Shear stress at the outer surface

-..(if)

Cin Shear strain produced Shear strain at outer surface
-_j-:!e_ ( F‘mmequltion{iﬂ.ahur!tmin=;—?)
(%)
_fLxL
R6
ce _f,
— =il
I-R ...(2.25)
i _C9_g
R L r°

FrOm equation (1), 1t 1s clear that shear stress at any point in the snalt 1s proportonal
to the distance of the point from the axis of the shaft. Hence the shear stress is maximum at

the outer surface and shear stress is zero at the axis of the shaft.
ASSUMPTION FOR SHEAR STRESS DEVLOPE IN SOLID SHAFT

The derivation of shear stress produced in a circular shaft subjected to torsion, is based
on the following assumptions :

1. The material of the shaft is uniform throughout.

2. The twist along the shaft is uniform.

3. The shatft is of uniform circular section throughout.

4, Cross-sections of the shaft, which are plane before twist remain plain after twist.

5. All radii which are straight before twist remain straight after twist.



TORQUE TRANSMITTED IN A SOLID SHAFT

The maximum torgue transmitted by a circular solid shaft, is obtained from the maxi-
mum shear stress induced at the outer surface of the solid shaft. Consider a shaft subjected to
a torque T as shown in Fig. 2.98.

Let [, = Maximum shear stress induced at the outer surface

R = Radius of the shaft
g = Shear stress at a radius v’ from the centre.

Consider an elementary circular ring of thickness ‘dr’ at a
distance ‘r’ from the centre as shown in Fig. 2.98. Then the area
of the ring,

dA = 2nrdr
From equation (2.26), we have

i@

R r .
Shear stress at the radius r,

Turning force on the elementary circular ring
= Shear stress acting on the ring x Area of ring
=gxdA

=fn:-x2:rd.r [ ¢=-"‘L]
*R R

1y 2
= =L % 2mr*dr
Rﬂ

Now turning moment due to the turning force on the elementary ring,
dT = Turning force on the ring x Distance of the ring from the axis

- % T S % x 2nrdr .12.27 (A))

~ The total turning moment (or total torque) is obtained by integrating the above
equation between the limits 0 and R

T= J:dT HLR%x 2nr*dr

R
R f, r
uh‘[;r’dr :—5 :h["l
R* x
1—;2- “th‘ﬂ:E x R

f

= e



-3 [ #-3)
;g:%x§=ﬂx":=%ﬁm .{(2.28)

TORQUE | TRAMSMITTED IN A HOLLOW SHAFT

Consider a hollow circular shaft subject to a torque T.
Refer to Fig. 7-3.
Let, R = Outer radius of the shaft,
= Inner radius of the shaft, and
T = Shear stress at radius K.
Following the same procedure, we have
dT" = Turming moment on the
elementary ring
=1 .2nx.dx.x
Integrating both sides, we get

R
jf.”' = J'l: L2mx L de . x
. T, T T
ut, eyt s or T,==—"X
X R " R
R R
T 2nt
IffF=I—.211.:£1' r=—_|-,t3c."r
F R R F
nr ot ' T T
- Fa X
or = — =—.—¢H4-r*}
: R |4| 2 R
T= n . D't d*
or, 16 D .AStrengih of hollow shafi)
n 4 4 T o4 4
= — ) —_ — =
But {1, 5 (L d”) i (R"=r")
R
.|‘ = E g "',I'-'
r = (0
or, f_ "R I A Torsion equation)

Twisting moment

Twisting moment at section of bar is defined as the algebraic sum of moments at applied
couples that lies in one part of the section.
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Strain energy in shear and torsion,




Strain energy in shear and torsion in a shaft

Consider a solid circular shaft of length [

and radius R, subjected to a torque T producing a
twist 0 in the length of the shaft (Fig. 8.47).

The work done = % T8,
which is stored in the shaft as strain energy.
But & = L5 .
L I R

..{Torsion equation)
where T =torque applied,
I, = polar moment of inertia,
C = modulus of rigidity,
I = length of the shaft, and
T = maximum shear stress on the surface of the shaft.

722X and a-%
- Work done -%—r! Cx R %x%x%
Now f,n%‘
. Work done % g % %gxxﬂ’t
strain energy, U-%u\’ulum ..{8.20) (" Volume = xR*)
When the shaft is hollow, with an external radius R and internal radius r :
Again, work done -Eﬂnnd'ﬂ-%nnd‘r-ﬂﬂ
Work done 4%:%
But L= R -rY
- Work done O el v HERer B -

Strain energy, U= reke — * volume «.(8.21)



Torsional rigidity

5 1 e
From the relation e

we have A= —

0
{

1
ci,

Since C, [ and J'." are constanis for a given shalt, O the angle of twist is direcily proaportional fo

o,

the rwisting mement. The quantity i R known as torsional rigidity and is represented by £ or p.

From the above relation, we have

Modulus of rupture

A modulus of ruptiere, corresponding o the modulus of rupture in bending, may be defined
as follows:

“The maximum fictitious shear stress calenlated by the torsion formula by using the
experimentally found maximum forgue (e ullimate torque) reguired to rupture a shafi”

; TR
Mathematically, T, =
f
where, T, = Modulus of rupture in torsion (also called computed nltimate twisting
strength),

T = Ultimate torque at failure, and
£ = Outer radius of the shallt.

The above expression for T_gives fictitious value of shear stress at the ullimate torque because the
r =
torsion formula = 15 not applicable bevond the limit of proportionality. The actual shear stress at

the ultimate torque is quite different from the shearing modulus of mpture because the shear stress does
not vary linearly from zero o maximum but it is uniformly distributed at the ulimate orgue.

Power transmitted by a shaft

Consider a force F newlons acting tangentially on the shaft of radius R. If the shalt due to this
tuming moment (Fx B} starts rotating at N epam. then,

Work supplied to the shalt/sec.
= [ x distance moved/zec.
= F x 2n RN/GO Nm/s

I »2m RN
= walls

or, r
_ Ix2nN KW
60 » 1000
,_ 2mNT
Henee TR
: 60 = 1000
Where T is the mean/average lorque in Nm,
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strength of solid and hollow circular shafts,shaft in series and parallel
strength of solid and hollow circular shafts.

In this case it is assumed that both the shafis have same length, material, same weight and
hence the same maximum shear stress,

Let, D, = Diameter of the solid shaft,
.rl'H. = Internal diameter of the hollow shaft,
U‘H = External diameter of the hollow shaft,
x'l,b. = Cross-sectional area of solid shaft,
Ay = Cross-sectional area of hollow shaft,
T, = Torque transmitted by the solid shafi, and
T, = Torque transmitted by the hollow shaft,
, L S
MNow, TI.::- =T.—X ;.j_;'

4 4
= R [Phodi
H=""16| by

n | D} - dy;

Strength of hollow shaft 7, 16 Dy
Strength of a solid shalt T = n ”;
16
Ty _ Dy —dy
3 ol e o w17
OF, T Dy 1 J:' (1-7)
Dy
Let, o=

ey

Dy, = ndy,. Substimting it in equation (7-7), we gel
- 3
Ty _ u"f";} - n"}". _ .:!':]. (n' =1 _ dy =1
Iy nely; D3 ey D n Dy
As the weight, material and length of both the shafis are same,

. AT-8)

-+ Cross-sectional area of solid shaft = Cross-sectional area of hollow shaft A, = A,
En_;f = E (D} -d%) or D, =D} - d
or, D: = {Df‘. - df;} 1“)}.. - df;
D = (' djy = djy) \n* dfy - dj;

—

Ds=dy n* =1 n" -1 A79)



Substituting the value of D7 in equation (7-8), we get

Ty dy (n* =1

L dﬂ. {nz =1 Jﬂ'z -1

(uz + 1) mz_ 1 .-|1+ 1

nin® =1 an = mant =1

Since Dy, > dy and = % =, it is obvious that the value of ‘n’" is greater than unity.
H
Suppose, n=2

e 7100

Ty, _ 241

Then, Ty 2002

This shows that the torgue transmitted by the hollow shaft is greater than the solid shaff,
therelby proving that the hiellow shaft is stronger than the solid shaft.
b)) Comparison by weight:
In this case it is assumed that both the shafis have the same length and material. Now, iff the torque
applied to both shafis is same, then, the maximum shear stress will also be same in both the cases.
M Weight of hollow shaft _ Wy _ Ay

Weight of solid shaft W, A

= 144

N oAl 2
_a0n ) pj - 4

2 AT
:uﬁ D e

Dy
Let, —L=n
= gy

Dy, = e, and substituting this value in equation (7-10), we get
Wy _nldy =djy _dj =1
W, D2 D2 w712}
Torque applied in both the cases is same ie., T = T,

& oo, 2]l

16 6| Dy,

pr o D —dy _nidy —dy _ djy (' = 1)

Dy ndy, n
3
D, = ﬂru|:" — I}
"
@ lzﬂ
no—
or, Df:df}[ " ] (T13)

Substituting the value of L‘rg in equation (7-12), we have



2 2 2 28
Wy _ _dygin"=1 (" =Dn

W, ! ["*_I]zn (= 12"
i
"
"

AT 1)

W, (2-nx2”
oy te =X 67870

If, n = 2 then,
] 3
.I"f}: {:4_- h.’.-’.

which shows that for same material, length and given torgie, weight of hollow shaft will be
fess. So, hollow shafis are economical compared to solid shafis as regards torsion.

Shaft are in series and parallel

In order to form a composite shaft sometimes two shafls are connected in series. In such
cases, each shaft transmits the same torgue. The angle of twist is the sum of the angle of twist of the
twer shafis comnected in series,

Thus, 1otal angle of twist is given by

1 I i
O=0+0,= _T' + ?q? =7|——+ -2 .AT15)
Gl, G, Gl, Gl,
where, "= Torque transmitted by each shaft,

l,, 1,= Respective lengths of the two shalts,
€. C,=Respective moduli of rigidity, and
fp' : "s*: = Respective polar moment of intertias,
When shalls are made of same material,
€, =0, = Csay

Then, o=t|h b
o T

mn e
Here, the driving torque is applied at one end and the resisting torque at the other.

Parallel
The shalts are said o be in parallel when the driving torgue is applied at the junction of the

shafts and the resisting torgue is at the other ends of the shafts. Here, the angle of twist is same for
each shaft, but the applied torque is divided between the two shafts,

Le. 8 =9,
]'1' .fE Tzil

or, ol ol (T116)
{l!}l' sz',"

and, 1= T] +T1 1T

If the shalts are made of same material

('] = f'l
I]-rl ?:1-;1 Ii IH iy
Then, IL-22 o Lo -
If’: r.”; IZ I.ﬂ; II! w7518 ()]

When torque is shared equally by both the shalis
T,=T,, then, II". b= fp:fl w718 (B)]
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Stresses due to combined bending and torsion

Stresses due to combined bending and torsion

Problems in this category frequently occur in circular-section shafts, particularly
those of ships. In such cases, the combination of shearing stresses due to torsion and
direct stresses due to bending causes a complex system of stress.

Consider a circular-section shaft subjected to a combined bending moment M and
atorque T, as shown in Figure 7.13.

The largest bending stresses due to M will be at both the top and the bottom of the
shaft, and the combined effects of bending stress and shear stress at those positions
will be as shown in Figure 7.14.

M _Top
:} <.‘:

B-ﬂttum
Figure 7.13 Shaft under combined bending and torsion

¥ Yi
_-'TW —l-f'r
r O r Ox
p—— —— —— ——
] a |
-— ——
Toy — X Ty = X

(@ ®)

Figure 7.14 Complex stress system due to M and T: (a) top of shaft (looking down);
(b) bottom of shaft (looking up)

Now o, is entirely due to M, and 7, is entirely due to T, so that

64 | d
o=M—|-
M{mf' 2

o= e (7.15)

ad’




16T

nd
2\d
w2
T.,.-"Hdl—,

From equilibrium considerations,

g =0

Substituting equations (7.15) and (7.16) into equations (7.6) and (7.7),

]
1M [[1em) [16TY
g, th= — & || —

xd® W ad | \ud
0o = J:%W:#Mﬁf’]
Similarly,

fm S (M4 T

ad’

Equations (7.17) and (7.18) can also be written in the form

Oy, O = 3

and

_ 6L

fm’."

where
M, = equivalent bending moment
=1MJM+ T
and
T, = equivalent torque
=JyM'+T*

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)
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Stresses due to combined bending and Twisting

Strength of shafts in combined bending and twisting.

Consider M, _ 1o be the equivalent bending which acting alone will develop the maximum tensile
stress equal w o, then

M M

[ T Wad

i i H (20,46
Yaptiay oap? !

32M, . =['_ﬁ][,¢4rl_ 1@]

xD* o

or M,. =[H[M: M+ ;r;:] (20.47)

Similarly, if T . is the equivalent twisting moment which acting alone develops the maximum

shearing stress equal to 7, then
T, 16T, .
Trruu. = :.‘ 55 f;- {EU.-IEJ
(w7 /16) =D
167, . 16 s
Therefore, —L = [—‘J [ JMZ + T2 ]
Ty Ty ' ’

or =[,|wa +T7 ] (20.49)

Therefore, the ratio of the maximum shearing stress o the principal stress is:

Fmae __ Tec . (&D*132)
o, (xD'116) M, .

TI“--C - UM-::! + T::

M. M+ M2 4T

(20,50
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Types springs, spring material

Introduction
A spring 15 defined as an elastic body, whose function 1s to distort when loaded and to
recover its original shape when the load is removed. The various important applications of
springs are as follows:
1. To cushion. absorb or control energy due to either shock or vibration as n car springs.
railway buffers, air-craft landing gears. shock absorbers and vibration dampers.
2. To apply forces. as in brakes. clutches and spring loaded valves.
3. To control motion by maintaining contact between two elements as in cams and followers.
4. To measure forces, as in spring balances and engine indicators.
5. To store energy. as in watches, tovs. ete.

Tvpes of springs:

1. Helical springs. The helical springs are made up of a wire coiled in the form of a helix and

15 priumarily mtended for compressive or tensile loads.

(@) Compression helical spring. () Tension helical spring.
2. Conical and volute springs. The comcal and volute springs. as shown m Fig. 23.2. are
used in special applications where a telescoping spring or a spring with a spring rate that

increases with the load 1s desired

A L.

=
Wis | & L\ﬁ
ftw =
[ e l——1B
@‘ "_ @ 2 - j_" _"E?;
——2 —
ﬁfﬁ_ _!- = 7 JT‘ —m

(@) Conbcal sqwing. (&) Volute spring.



3. Torsion springs. These springs may be of helical or spiral type as shown mn Fig. The
helical type may be used only in applications where the load tends to wind up the spring and

are used in varions electrical mechanisms.

{a) Helical torsion spring. () Spiral torsion spring.
4. Laminated or leaf springs. The lamunated or leaf spring (also known as flat spring or
carriage spring) consists of a number of flat plates (known as leaves) of varving lengths held

together by means of clamps and bolts.

|

e - — - "'-'?’-“'z.-:.;,,..l: 3 ‘,-:.i'ﬁﬁ
T il ‘f‘ i | e

: 1 s "':'27'34‘.3 - _| _.E:'f; A

Tt B | Yo,

Jli 1 -f«'f/m,;i. i ;_ﬁm’h

o O | e

Lamunated or leaf sprngs. Dase or bellevile sprngs.

5. Disc or bellevile springs. These springs consist of a number of comical dises held together
against slipping by a central bolt or tube.
6. Special purpose springs. These springs are air or liqud springs, rubber springs, ring
springs etc. The fluids (air or Liquid) can behave as a compression spring. These springs are
used for special tvpes of application only.
Terms used in Compression Springs
1. Solid length. When the compression spring is compressed until the coils come in contact
with each other, then the spring 1s said to be solid.

Solid length of the spring,. L, =n'.d where n' = Total number of coils, and d = Diameter of

the wire.



2. Free length. The free length of a compression spring. as shown m Fig.. 15 the length of the

spring in the free or unloaded condition.

c :i‘.'_— yd & ; =
= '.": - T s 222422 LJ/EL?’I! |
<-_'_’ = E‘ 1 f.fff_ff/r]ﬁ.:/__{/n ?ﬂ
r: '-a'-": = ' — 63
_L I'E a— — %E
—1 = U p———) S
w77 /3 P -’f.-’.—”?"?.f*///.?/f/} 7777 IIIIRTIT VT
L4 W

Free length of the spring.
Ly = Solid length + Maximnun compression + *Clearance between adjacent coils (or clash
allowance)

=n'd+ 8, +0.15 6,
3. Spring index. The spring index 1s defined as the ratio of the mean diameter of the col to
the diameter of the wire. Spring index. C = D / d where D = Mean diameter of the coil. and d
= Diameter of the wire.
4. Spring rate. The spring rate (or stiffness or spring constant) 1s defined as the load required
per unit deflection of the spring. Mathematically, Spring rate, k=W /  where W = Load, and
6 = Detlection of the spring.
5. Pitch. The pitch of the coil is defined as the axial distance between adjacent coils in
uncompressed state. Mathemancally, Pitch of the coil,

_ Free Length
- n -1
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Stress developed in springs,Wahl’s factor

Stresses in Helical Springs of Circular Wire

Consider a helical compression spring made of circular wire and subjected to an axial
as shown m Fig.(«a).
Let D = Mean diameter of the spring coil.

d = Diameter of the spring wire,

1 = Number of active coils.

G = Modulus of ngidity for the spring material,

= Axial load on the spring,

t = Maximum shear stress induced mn the wire,

C' = Spring index = D/d,

p = Pitch of the coils, and

0 = Deflection of the spring, as a result of an axial load W

w
+—1—F
;* (i I
: ' J T [
w
L—D—J [y =
w
a) Axially loaded helical sprng. (#) Free body diagram showing that wire

is subjected to torsional shear and a
direct shear.

Now consider a part of the compression spring as shown in Fig. (b). The load W tends to

S8 S8S 8-

—

rotate the wire due to the twisting moment ( T ) set up in the wire. Thus torsional shear stress

15 induced in the wire.
A little consideration will show that part of the spring, as shown in Fig.(5), 15 in equilibrioum

under the action of two forces 7 and the twisting moment I. We know that the twisting

moment,

T = Frx£=£xr1xd3
16

()



The torsional shear stress diagram is shown in Fig. (a).

In addition to the torsional shear stress (1) induced in the wire, the following stresses also act
on the wire:

1. Direct shear stress due to the load W and

2. Stress due to curvature of wire.

We know that the resultant shear stress induced m the wire,
i SWD K 4AW
T = 1:1 L TE = i 5
md wd

Maximum shear stress induced in the wire,

= Torsional shear stress + Direct shear stress

8WLD AW sw.u[' d]
= + = 1+

nd® wnd* nd 2D
,_BWD[1+J_]=K>¢BW'D .
- c 5 "ﬁ‘;’" A1)
. (Substiting D/d = C)
where K =Shnarsh‘essfactor=l+é
.. Maximum shear stress induced in the wire,
W V.
1=K>(B "?:qu )
nd nd
C -1 +t}.615

where K=4C-4 C
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Deflection in helical spring , Springs in series and parallel

Deflection of Helical Springs of Circular Wire

Total active length of the wire,
I = Length of one coil x No. of active coils=n D= n

Let 8 = Angular deflection of the wire when acted upon by the torque T
- Axial deflection of the spring,
d=0x%xD72 A
We also know that
T T _G8
I Dbiz I
Tl - T oF
B = E .| considenng ?:Tf
where J = Polar moment of inertia of the spring wire

= %xd*,db-emg the diameter of spring wire.

and G = Modulus of ngpdity for the matenal of the spnng wire.
Now substituting the values of | and ./ in the above equation, we have
D
Tl [W i E] "Dr 6w
0=—-= = - _(fi
32

Springsin series and parallel

Several close coiled helical springs may be used in two distinct combinations to carry a single load or
combination of loads that can be converted to loads carried along the axes of individual springs. The
two combinations are described here,

Series Spring System  The springs in this system join end to end and the same load is carried by each
spring. The joining of springs in series system is shown in Fig. 12.6. Apparently the deflection & at the

oad point is the sum of individual deflections. i.¢.
6=8 + 6+ &, (i)

& = ky
&=k

8 = ky
5y
Ie

Spring In series



For an axial load P and if stiffnesses or spring constants of the springs are k, k;, k5, (i) can be written
as

E= . s s s {ii]
or

i.e = ——t — (12.16)

Here &, is the stiffness of a single spring equivalent to the springs connected in series,

Parallel Spring System  Parallel connected springs are shown in Fig. 12.7. In this case the deflection
of each spring is same while the load carried by each is different. The equivalent spring is that which
carries the sum of loads of individual springs and also deflects through the same distance as others in
the system. Thus if loads carried by individual springs are P, P;, Py, the total load carried by system is
P, then

P=P +P,+ P (1)
If deflection of the system and its members is &, then
P R B B
—_— e e
6 46 & 0
or k,=k +ky+ky (12.17)

Fig. 12.7 Springs in parallel

where k_, k. k, and k, have the same meaning as stated in case of series system. The Eqn. (12.17) states
that the stiffness of a parallel connected system of helical springs is the sum of stiffnesses of individual
springs.
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